Selection of the Mars Exploration Rover landing sites

[1] The selection of Meridiani Planum and Gusev crater as the Mars Exploration Rover landing sites took over 2 years, involved broad participation of the science community via four open workshops, and narrowed an initial ∼155 potential sites (80–300 × 30 km) to four finalists based on science and safety. Engineering constraints important to the selection included (1) latitude (10°N–15°S) for maximum solar power, (2) elevation (less than −1.3 km) for sufficient atmosphere to slow the lander, (3) low horizontal winds, shear, and turbulence in the last few kilometers to minimize horizontal velocity, (4) low 10-m-scale slopes to reduce airbag spin-up and bounce, (5) moderate rock abundance to reduce abrasion or strokeout of the airbags, and (6) a radar-reflective, load-bearing, and trafficable surface safe for landing and roving that is not dominated by fine-grained dust. The evaluation of sites utilized existing as well as targeted orbital information acquired from the Mars Global Surveyor and Mars Odyssey. Three of the final four landing sites show strong evidence for surface processes involving water and appear capable of addressing the science objectives of the missions, which are to determine the aqueous, climatic, and geologic history of sites on Mars where conditions may have been favorable to the preservation of evidence of possible prebiotic or biotic processes. The evaluation of science criteria placed Meridiani and Gusev as the highest-priority sites. The evaluation of the three most critical safety criteria (10-m-scale slopes, rocks, and winds) and landing simulation results indicated that Meridiani and Elysium Planitia are the safest sites, followed by Gusev and Isidis Planitia.

[1]  A. F. C. Haldemann,et al.  Analysis of MOLA data for the Mars Exploration Rover landing sites , 2003 .

[2]  Randolph L. Kirk,et al.  Meter‐scale slopes of candidate MER landing sites from point photoclinometry , 2003 .

[3]  Raymond E. Arvidson,et al.  Rock Abrasion Tool: Mars Exploration Rover mission , 2003 .

[4]  Kenneth L. Tanaka,et al.  Geology of the MER 2003 “Elysium” candidate landing site in southeastern Utopia Planitia, Mars , 2003 .

[5]  Raul A. Romero,et al.  Athena Mars rover science investigation , 2003 .

[6]  Miles J. Johnson,et al.  Athena Microscopic Imager investigation , 2003 .

[7]  L. Crumpler,et al.  Geology and MER target site characteristics along the southern rim of Isidis Planitia, Mars , 2003 .

[8]  J. Grant,et al.  Geology of the Melas Chasma landing site for the Mars Exploration Rover mission , 2003 .

[9]  R. Greeley,et al.  Wind‐related features in Gusev crater, Mars , 2003 .

[10]  Nathan T. Bridges,et al.  Near‐surface temperatures at proposed Mars Exploration Rover landing sites , 2003 .

[11]  Mark Ian Richardson,et al.  Meteorology of proposed Mars Exploration Rover landing sites , 2003 .

[12]  Steven W. Squyres,et al.  The new Athena alpha particle X‐ray spectrometer for the Mars Exploration Rovers , 2003 .

[13]  Raymond E. Arvidson,et al.  Mars Exploration Rover mission , 2003 .

[14]  R. Kirk,et al.  High-resolution topomapping of candidate MER landing sites with Mars Orbiter Camera narrow-angle images , 2003 .

[15]  Kenneth L. Tanaka,et al.  Exploring Gusev Crater with spirit: Review of science objectives and testable hypotheses , 2003 .

[16]  Scot Rafkin,et al.  Meteorological predictions for 2003 Mars Exploration Rover high‐priority landing sites , 2003 .

[17]  A. F. C. Haldemann,et al.  Rock size-frequency distributions on Mars and implications for Mars Exploration Rover landing safety and operations : Mars exploration rover mission and landing sites , 2003 .

[18]  U. Bonnes,et al.  Athena MIMOS II Mossbauer spectrometer investigation , 2003 .

[19]  S. T. Elliot,et al.  Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation , 2003 .

[20]  R. Fergason,et al.  Thermal inertia using THEMIS infrared data , 2003 .

[21]  Mark I. Richardson,et al.  Analysis of atmospheric mesoscale models for entry, descent, and landing , 2003 .

[22]  A. McEwen,et al.  Morphology and Composition of the Surface of Mars: Mars Odyssey THEMIS Results , 2003, Science.

[23]  M. Zuber,et al.  Mars Orbiter Laser Altimeter pulse width measurements and footprint‐scale roughness , 2003 .

[24]  P. Christensen,et al.  THEMIS characterization of the MER Gusev crater landing site , 2003 .

[25]  M. Shepard,et al.  Limits on inference of Mars small‐scale topography from MOLA data , 2003 .

[26]  Steven H. Silverman,et al.  Miniature thermal emission spectrometer for the Mars Exploration Rover , 2002, SPIE Optics + Photonics.

[27]  A. Haldemann,et al.  Gusev and Meridiani Will Look Different: Radar Scattering Properties of the Mars Exploration Rover Landing Sites , 2003 .

[28]  J. Muller,et al.  Selection of the landing site in Isidis Planitia of Mars probe Beagle 2 , 2003 .

[29]  Joy A. Crisp,et al.  Selection of the Final Four Landing Sites for the Mars Exploration Rovers , 2003 .

[30]  Randolph L. Kirk,et al.  Meter-Scale 3-D Models of the Martian Surface from Combining MOC and MOLA Data , 2003 .

[31]  Mars exploration rover landing site hectometer slopes , 2002 .

[32]  S. Ruff,et al.  Bright and dark regions on Mars: Particle size and mineralogical characteristics based on thermal emission spectrometer data , 2002 .

[33]  T. Hare,et al.  Geology of the "Elysium" Mars Exploration Rover Candidate Landing Site in Southeastern Utopia Planitia , 2002 .

[34]  R. Morris,et al.  Evidence for platy hematite grains in Sinus Meridiani, Mars , 2002 .

[35]  B. Jakosky,et al.  Surficial Geologic Surveys of Gale Crater and Melas Chasma, Mars: Integration of Remote-Sensing Data , 2002 .

[36]  N. O. Snider,et al.  Mantled and exhumed terrains in Terra Meridiani, Mars , 2002 .

[37]  R. Arvidson,et al.  Geologic setting and origin of Terra Meridiani hematite deposit on Mars , 2002 .

[38]  A. McEwen,et al.  Repeated Aqueous Flooding from the Cerberus Fossae: Evidence for Very Recently Extant, Deep Groundwater on Mars , 2002 .

[39]  D. Leverington,et al.  A Large Paleolake Basin at the Head of Ma'adim Vallis, Mars , 2002, Science.

[40]  J. Mustard,et al.  Effects of glass content and oxidation on the spectra of SNC-like basalts: Applications to Mars remote sensing , 2002 .

[41]  R. Wilson,et al.  Investigation of the nature and stability of the Martian seasonal water cycle with a general circulation model , 2002 .

[42]  N. Bridges,et al.  Downselection of Landing Sites for the Mars Exploration Rovers , 2002 .

[43]  Anton B. Ivanov,et al.  Analysis of Mars Orbiter Camera Stereo Pairs , 2002 .

[44]  Photoclinometry Measurements of Meter-scale Slopes for the Potential Landing Sites of the 2003 Mars Exploration Rovers , 2002 .

[45]  A. McEwen,et al.  Recent aqueous floods from the Cerberus Fossae, Mars , 2002 .

[46]  T. Farr,et al.  The roughness of natural terrain: A planetary and remote sensing perspective , 2001 .

[47]  T. Parker,et al.  The Evolution of the Martian Hydrosphere: Implications for the Fate of a Primordial Ocean and the Current State of the Northern Plains , 2001 .

[48]  G. Leonard Tyler,et al.  Radio science observations with Mars Global Surveyor: Orbit insertion through one Mars year in mapping orbit , 2001 .

[49]  M. Malin,et al.  Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission , 2001 .

[50]  Richard V. Morris,et al.  Global mapping of Martian hematite mineral deposits: Remnants of water‐driven processes on early Mars , 2001 .

[51]  John C. Pearl,et al.  Thermal Emission Spectrometer results: Mars atmospheric thermal structure and aerosol distribution , 2001 .

[52]  Daniel H. Rothman,et al.  Statistics of Mars' topography from the Mars Orbiter Laser Altimeter: Slopes, correlations, and physical Models , 2001 .

[53]  David E. Smith,et al.  Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars , 2001 .

[54]  M. Mellon,et al.  Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results , 2001 .

[55]  R. Phillips,et al.  Evidence for extensive denudation of the Martian highlands , 2001 .

[56]  David E. Smith,et al.  Ancient Geodynamics and Global-Scale Hydrology on Mars , 2001, Science.

[57]  R. Kirk,et al.  Photometry of the Martian Atmosphere: An Improved Practical Model for Cartography and Photoclinometry , 2001 .

[58]  M. Golombek,et al.  Using MOC and MOLA Data to Assess Landing Site Safety , 2001 .

[59]  M. Golombek,et al.  Preliminary Engineering Constraints and Potential Landing Sites for the Mars Exploration Rovers , 2001 .

[60]  James W. Head,et al.  Kilometer‐scale roughness of Mars: Results from MOLA data analysis , 2000 .

[61]  R. Haberle,et al.  A comparison of MGS Phase 1 aerobraking radio occultation data and the NASA Ames Mars GCM , 2000 .

[62]  M. Mellon,et al.  The thermal inertia of Mars from the Mars Global Surveyor Thermal Emission Spectrometer , 2000 .

[63]  R. Clark,et al.  Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: Evide , 2000 .

[64]  M. Mellon,et al.  High‐resolution thermal inertia mapping of Mars: Sites of exobiological interest , 2000 .

[65]  M. Mellon,et al.  High-Resolution Thermal Inertia Mapping from the Mars Global Surveyor Thermal Emission Spectrometer , 2000 .

[66]  R. Greeley,et al.  Geologic map of the MTM-15182 and MTM-15187 quadrangles, Gusev Crater-Ma'adim Vallis region, Mars , 2000 .

[67]  J W Head,et al.  Possible ancient oceans on Mars: evidence from Mars Orbiter Laser Altimeter data. , 1999, Science.

[68]  James W. Head,et al.  Kilometer‐scale slopes on Mars and their correlation with geologic units: Initial results from Mars Orbiter Laser Altimeter (MOLA) data , 1999 .

[69]  Bruce A. Campbell,et al.  Mars mapping with delay-Doppler radar , 1999 .

[70]  Jeffrey R. Barnes,et al.  General circulation model simulations of the Mars Pathfinder atmospheric structure investigation/meteorology data , 1999 .

[71]  Joy A. Crisp,et al.  Soil‐like deposits observed by Sojourner, the Pathfinder rover , 1999 .

[72]  H. J. Moore,et al.  Assessment of Mars Pathfinder landing site predictions , 1999 .

[73]  J. Garvin,et al.  Vertical roughness of Mars from the Mars Orbiter Laser Altimeter , 1999 .

[74]  David E. Smith,et al.  The relationship between MOLA northern hemisphere topography and the 6.1‐Mbar atmospheric pressure surface of Mars , 1998 .

[75]  Nathalie A. Cabrol,et al.  Duration of the Ma'adim Vallis/Gusev Crater Hydrogeologic System, Mars , 1998 .

[76]  Nathalie A. Cabrol,et al.  Ma'adim Vallis Evolution: Geometry and Models of Discharge Rate , 1998 .

[77]  L. Crumpler Southwestern Isidis Planitia, Mars: A Mars Surveyor Landing Site at the Geologic Contact Between Three Units , 1998 .

[78]  S. Larsen,et al.  The Mars Pathfinder atmospheric structure investigation/meteorology (ASI/MET) experiment. , 1997, Science.

[79]  H. J. Moore,et al.  Overview of the Mars Pathfinder mission and assessment of landing site predictions. , 1997, Science.

[80]  M. Golombek,et al.  Size‐frequency distributions of rocks on Mars and Earth analog sites: Implications for future landed missions , 1997 .

[81]  Mars Pathfinder landing site assessment with Goldstone delay‐Doppler and CW radar experiments , 1997 .

[82]  H. J. Moore,et al.  Selection of the Mars Pathfinder landing site , 1997 .

[83]  Nathalie A. Cabrol,et al.  Ma'adim Vallis Revisited through New Topographic Data: Evidence for an Ancient Intravalley Lake , 1996 .

[84]  F. Hourdin,et al.  Baroclinic Wave Transitions in the Martian Atmosphere , 1996 .

[85]  J. Pollack,et al.  Orographic control of storm zones on Mars , 1996, Nature.

[86]  B. Butler 3.5-cm radar investigation of Mars and Mercury : planetological implications , 1994 .

[87]  David C. Pieri,et al.  Coastal Geomorphology of the Martian northern plains , 1993 .

[88]  J. Pollack,et al.  Dynamics of the atmosphere of Mars , 1992 .

[89]  H. J. Moore,et al.  The Martian surface layer , 1992 .

[90]  D. Muhleman,et al.  Radar determination of Mars surface properties , 1992 .

[91]  J. Keller,et al.  Surface-Material Maps of Viking Landing Sites on Mars , 1991 .

[92]  T. W. Thompson,et al.  A radar-echo model for Mars. , 1991 .

[93]  Robert M. Haberle,et al.  Simulations of the general circulation of the Martian atmosphere: 1. Polar processes , 1990 .

[94]  T. Parker,et al.  Transitional morphology in West Deuteronilus Mensae, Mars: Implications for modification of the lowland/upland boundary , 1989 .

[95]  H. J. Moore,et al.  Viking landing sites, remote-sensing observations, and physical properties of Martian surface materials , 1989 .

[96]  R. Greenberg,et al.  Viscosity and Mass Transport in Keplerian Disks with Radial Gradients in Surface Density , 1988 .

[97]  M. Malin,et al.  High-Resolution Thermal Imaging of Mars , 1987 .

[98]  Ronald Greeley,et al.  Geologic map of the eastern equatorial region of Mars , 1987 .

[99]  Philip R. Christensen,et al.  The spatial distribution of rocks on mars , 1986 .

[100]  B. Jakosky,et al.  Global duricrust on Mars: Analysis of remote‐sensing data , 1986 .

[101]  P. Christensen Regional dust deposits on Mars - Physical properties, age, and history , 1986 .

[102]  D. H. Scott,et al.  GEOLOGIC MAP OF THE WESTERN EQUATORIAL REGION OF MARS , 1986 .

[103]  B. Jakosky On the thermal properties of Martian fines , 1986 .

[104]  H. Jons Late Sedimentation and Late Sediments in the Northern Lowlands on Mars , 1985 .

[105]  P. Christensen,et al.  Martian dust mantling and surface composition: Interpretation of thermophysical properties , 1982 .

[106]  J. Barnes Midlatitude Disturbances in the Martian Atmosphere: A Second Mars Year , 1981 .

[107]  F. Palluconi,et al.  Thermal inertia mapping of Mars from 60°S to 60°N , 1981 .

[108]  H. Masursky,et al.  Viking site selection and certification , 1981 .

[109]  E. Miner,et al.  Time variability of Martian bolometric albedo , 1981 .

[110]  Terry Z. Martin,et al.  Thermal and albedo mapping of Mars during the Viking primary mission , 1977 .

[111]  H. Masursky,et al.  Search for the Viking 2 Landing Site , 1976, Science.

[112]  H. Masursky,et al.  The Viking Landing Sites: Selection and Certification , 1976, Science.

[113]  J. Pollack,et al.  Winds on Mars during the Viking season - Predictions based on a general circulation model with topography , 1976 .