Ultrafast all-optical switching in a silicon-based plasmonic nanoring resonator.

A silicon-based plasmonic nanoring resonator is proposed for ultrafast, all-optical switching applications. Full-wave numerical simulations demonstrate that the photogeneration of free carriers enables ultrafast switching of the device by shifting the transmission minimum of the resonator with a switching time of 3 ps. The compact 1.00 μm² device footprint demonstrates the potential for high integration density plasmonic circuitry based on this device geometry.

[1]  H. Haus,et al.  Microring resonator channel dropping filters , 1997 .

[2]  S. E. Irvine,et al.  A gigahertz surface magneto-plasmon optical modulator , 2004, IEEE Journal of Quantum Electronics.

[3]  Xiang Zhang,et al.  Observation of stimulated emission of surface plasmon polaritons. , 2008, Nano letters.

[4]  Mohammad Ali Mohammad,et al.  Fabrication of sub-10nm silicon carbon nitride resonators using a hydrogen silsesquioxane mask patterned by electron beam lithography , 2011 .

[5]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[6]  S. Bozhevolnyi,et al.  Surface plasmon polariton based modulators and switches operating at telecom wavelengths , 2004 .

[7]  A. Y. Elezzabi,et al.  Monolithic integration of plasmonic waveguides into a complimentary metal-oxide-semiconductor- and photonic-compatible platform , 2010 .

[8]  Nikolay I. Zheludev,et al.  Ultrafast active plasmonics: transmission and control of femtosecond plasmon signals , 2008 .

[9]  Fuad E. Doany,et al.  Carrier Lifetime vs. Ion-Implantation Dose in Silicon on Sapphire , 1987, Topical Meeting on Picosecond Electronics and Optoelectronics.

[10]  Pierre Berini,et al.  Amplification of long-range surface plasmons by a dipolar gain medium , 2010 .

[11]  A. Y. Elezzabi,et al.  Ultrafast all-optical modulation in silicon-based nanoplasmonic devices. , 2009, Optics express.

[12]  T. Ebbesen,et al.  Channel plasmon subwavelength waveguide components including interferometers and ring resonators , 2006, Nature.

[13]  M. A. Mohammad,et al.  Interdependence of optimum exposure dose regimes and the kinetics of resist dissolution for electron beam nanolithography of polymethylmethacrylate , 2010 .

[14]  Alexey V. Krasavin,et al.  Electro-optic switching element for dielectric-loaded surface plasmon polariton waveguides , 2010 .

[15]  Ultrafast all-optical modulator for 1.5 μm controlled by Ti:Al2O3 laser , 2010 .

[16]  Shiyang Zhu,et al.  Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration. , 2011, Optics express.

[17]  A. Y. Elezzabi,et al.  Experimental realization of subwavelength plasmonic slot waveguides on a silicon platform. , 2010, Optics letters.

[18]  Fouad Karouta,et al.  Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides. , 2009, Optics express.

[19]  Laurent Markey,et al.  Thermo-optic control of dielectric-loaded plasmonic waveguide components. , 2010, Optics express.

[20]  Min Qiu,et al.  Broadband coupler between silicon waveguide and hybrid plasmonic waveguide. , 2010, Optics express.

[21]  Michael Feser,et al.  Nanofabrication of high aspect ratio 24nm x-ray zone plates for x-ray imaging applications , 2007 .

[22]  D. Bergman,et al.  Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. , 2003, Physical review letters.

[23]  G. Lo,et al.  Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits , 2011 .

[24]  N. Rotenberg,et al.  Ultrafast silicon-based active plasmonics at telecom wavelengths. , 2010, Optics express.

[25]  P. A. Schumann,et al.  Comparison of classical approximations to free carrier absorption in semiconductors , 1967 .