The development of new metallurgical materials and technologies. Part 1

[1]  M. Kostina,et al.  Static and cyclic strength of austenitic corrosion-resistant cast Cr-Ni-Mn-Mo-N steel , 2015, Russian Metallurgy (Metally).

[2]  L. Leont’ev,et al.  Thermodynamics of oxygen solutions in the molten zirconium-containing Fe-Co system , 2015, Doklady Physical Chemistry.

[3]  L. Leont’ev,et al.  Thermodynamics of oxygen solutions in vanadium-containing Fe-Co melts , 2015, Doklady Physical Chemistry.

[4]  A. Morozov,et al.  Effect of directional solidification on the structure and properties of Ni3Al-based alloy single crystals alloyed with Cr, Mo, W, Ti, Co, Re, and REM , 2015, Russian Metallurgy (Metally).

[5]  A. Leont'ev,et al.  Thermodynamics of oxygen solutions in niobium-containing Fe–Co melts , 2015, Doklady Physical Chemistry.

[6]  L. Leont’ev,et al.  Deoxidation Equilibrium of Niobium in the Iron-Nickel Melts , 2015, Metallurgical and Materials Transactions B.

[7]  A. I. Stepanov,et al.  Development of Technology for Microalloying Steel with Boron Using Ferro-Silicon-Boron , 2014, Metallurgist.

[8]  D. Kovalev,et al.  Mechanical activation of a hard magnetic Fe-Cr-Co alloy powder charge , 2014, Russian Metallurgy (Metally).

[9]  Kai Chen,et al.  New Monitoring System of the Refractory Lining Wear in the Blast Furnace Hearth , 2014 .

[10]  A. Morozov,et al.  Effect of the method of producing Ni3Al-based alloy single crystals on the macro- and microhomogeneity of component distribution, structure, and properties , 2014, Russian Metallurgy (Metally).

[11]  A. Aleksandrov,et al.  Thermodynamics of the oxygen solutions in chromium-containing melts of the Fe-Co system , 2014, Russian Metallurgy (Metally).

[12]  A. S. Baikin,et al.  Mechanical properties of nanostructured nitinol/chitosan composite material , 2014, Inorganic Materials: Applied Research.

[13]  A. Morozov,et al.  Mechanical properties of NiAl-Y2O3-based powdered alloys produced by directional recrystallization , 2014, Russian Metallurgy (Metally).

[14]  A. Aleksandrov,et al.  Thermodynamics of the oxygen solutions in aluminum-containing Fe-Co melts , 2014, Russian Metallurgy (Metally).

[15]  A. Aleksandrov,et al.  Thermodynamics of the oxygen solutions in manganese-containing Fe-Co melts , 2014, Russian Metallurgy (Metally).

[16]  S. Belyaev,et al.  Microbial potential for cleaning the oiled iron scale , 2014, Applied Biochemistry and Microbiology.

[17]  M. Alymov,et al.  Magnetic hysteresis properties of Fe-26Cr-16Co hard magnetic alloys , 2014 .

[18]  A. Aleksandrov,et al.  Oxygen solubility in silicon-containing Fe-Co melts , 2013, Russian Metallurgy (Metally).

[19]  Y. Chesnokov,et al.  Monitoring the wear of the refractory lining in the blast-furnace hearth , 2013, Steel in Translation.

[20]  A. Ashmarin,et al.  Preparation of compact vanadium nitride using the oxidative constructing approach and study of its properties , 2013, Inorganic Materials: Applied Research.

[21]  L. Leont’ev,et al.  Oxygen solubility in a niobium-containing Fe-40% Ni melt , 2013, Doklady Physical Chemistry.

[22]  G. Sprygin,et al.  Oxygen solubility in zirconium-containing melts of the Fe-Ni system , 2013, Doklady Physical Chemistry.

[23]  A. Aleksandrov,et al.  Thermodynamics of the oxygen solutions in niobium-containing Fe-Ni melts , 2012, Russian Metallurgy (Metally).

[24]  O. K. Belousov,et al.  Materials science aspects of the production, treatment, and properties of titanium nickelide for application in endovascular surgery , 2011 .

[25]  M. Kostina,et al.  Effect of copper additions on the mechanical properties of iron , 2011 .

[26]  A. M. Arsenkin,et al.  Effect of a pipe-steel killing technology on the composition and number of nonmetallic inclusions , 2011 .

[27]  A. M. Arsenkin,et al.  Prospects of the application of barium-bearing master alloys for the deoxidation and modification of a railroad metal , 2011 .

[28]  K. Grigorovich,et al.  Analysis of the complex deoxidation of carbon steel melts , 2011 .

[29]  V. S. Yusupov,et al.  Study of rolling in helical rolls by mathematical simulation with the DEFORM 3D software package , 2011 .

[30]  V. S. Yusupov,et al.  Longitudinal rolling in helicoid rollers , 2011 .

[31]  L. V. Zolotukhina,et al.  The effect of super- and nanodispersed powders of zinc and copper alloys in plastic greases on the structure and triboengineering properties of steel surfaces , 2011 .

[32]  K. Solntsev,et al.  Manufacturing and X-ray phase investigation into monolithic nitrides of zirconium and hafnium , 2010 .

[33]  V. Zhuchkov,et al.  Processes and equipment for dispersal of metals and injection of materials , 2009 .

[34]  A. Aleksandrov,et al.  Deoxidation Equilibrium of Titanium in the Iron–Nickel Melts , 2009 .

[35]  K. Grigorovich,et al.  Determination of oxygen in W-C-Co nanopowders , 2008 .

[36]  O. Teplov,et al.  Hydrogen reduction kinetics of electrometallurgical slime , 2007 .

[37]  K. Povarova,et al.  Preparation, Structure, and Properties of Ni3Al and NiAl Light Powder Alloys for Aerospace , 2007 .

[38]  V. Dashevskii,et al.  Thermodynamics of oxygen solutions in Fe-Mn melts , 2006 .

[39]  N. N. Makarova,et al.  Deoxidation Equilibrium of Chromium in Liquid Iron-Nickel Alloys , 2005 .

[40]  N. P. Lyakishev,et al.  Thermodynamics of Oxygen Solutions in Carbon-Containing Fe-Ni Alloys , 2005 .

[41]  N. N. Makarova,et al.  Deoxidation equilibrium of aluminum and silicon in the liquid iron-nickel alloys , 2005 .

[42]  N. N. Makarova,et al.  Deoxidation Equilibrium of Manganese and Silicon in Liquid Iron-Nickel Alloys , 2003 .

[43]  N. N. Makarova,et al.  SOLUTION OF OXYGEN IN FE-NI MELTS CONTAINING TITANIUM , 1999 .

[44]  P. May,et al.  Plasma processing of materials , 1993 .