VARIATIONAL INEQUALITIES, COMPLEMENTARITY PROBLEMS AND PSEUDO-MONOTONICITY. DYNAMICAL ASPECTS

In this paper we will present several existence theorems and we will study the stability of equilibrium given by a variational inequality or by a complementarity problem in a general Hilbert space, using the notion of local projected dynamical system. AMS Subject Classiflcation: 47H04, 90A14.

[1]  C. Henry Differential equations with discontinuous right-hand side for planning procedures , 1972 .

[2]  C. Henry An existence theorem for a class of di erential equations with multival-ued right-hand side , 1973 .

[3]  S. Karamardian Complementarity problems over cones with monotone and pseudomonotone maps , 1976 .

[4]  Józef Banaś,et al.  Measures of Noncompactness in Banach Spaces , 1980 .

[5]  Georges Haddad,et al.  Topological properties of the sets of solutions for functional differential inclusions , 1981 .

[6]  B. Cornet,et al.  Existence of slow solutions for a class of differential inclusions , 1983 .

[7]  C. Baiocchi,et al.  Variational and quasivariational inequalities: Applications to free boundary problems , 1983 .

[8]  H. Weber π-asymptotisches Spektrum und Surjektivitätssätze vom Fredholm Typ für nichtlineare Operatoren mit Anwendungen , 1984 .

[9]  A. A. Tolstonogov,et al.  Di erential Inclusions in a Banach Space , 2010 .

[10]  P. Dupuis Large deviations analysis of reflected diffusions and constrained stochastic approximation algorithms in convex sets , 1987 .

[11]  Alexander Shapiro Directional differentiability of metric projections onto moving sets at boundary points , 1988 .

[12]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[13]  S. Karamardian,et al.  Seven kinds of monotone maps , 1990 .

[14]  M. Seetharama Gowda,et al.  Affine pseudomonotone mappings and the linear complementarity problem , 1990 .

[15]  Shouchuan Hu Differential equations with discontinuous right-hand sides☆ , 1991 .

[16]  Nonlinear functional analysis and its applications, part I: Fixed-point theorems , 1991 .

[17]  A. Rodkina,et al.  Measures of noncompactness and condensing operators , 1992 .

[18]  G. Isac Complementarity Problems , 1992 .

[19]  A. Nagurney Network Economics: A Variational Inequality Approach , 1992 .

[20]  Jen-Chih Yao,et al.  Pseudo-monotone complementarity problems in Hilbert space , 1992 .

[21]  Siegfried Schaible,et al.  Characterizations of generalized monotone maps , 1993 .

[22]  Anna Nagurney,et al.  Dynamical systems and variational inequalities , 1993, Ann. Oper. Res..

[23]  W. Oettli,et al.  From optimization and variational inequalities to equilibrium problems , 1994 .

[24]  Anna Nagurney,et al.  A dynamical systems approach for network oligopolies and variational inequalities , 1994 .

[25]  Alexander Shapiro Existence and Differentiability of Metric Projections in Hilbert Spaces , 1994, SIAM J. Optim..

[26]  A Leray-Schauder type theorem for approximable maps , 1994 .

[27]  F. Giannessi,et al.  Variational inequalities and network equilibrium problems , 1995 .

[28]  A. Nagurney,et al.  Projected Dynamical Systems and Variational Inequalities with Applications , 1995 .

[29]  A. Nagurney,et al.  On the stability of projected dynamical systems , 1995 .

[30]  Schaible Siegfried,et al.  Generalized Monotonicity — Concepts and Uses , 1995 .

[31]  Anna Nagurney,et al.  Projected dynamical systems modeling and computation of spatial network equilibria , 1995, Networks.

[32]  Jen-Chih Yao,et al.  On the equivalence of nonlinear complementarity problems and least-element problems , 1995, Math. Program..

[33]  Jacques A. Ferland,et al.  Criteria for differentiable generalized monotone maps , 1996, Math. Program..

[34]  Monica Bianchi,et al.  Generalized monotone bifunctions and equilibrium problems , 1996 .

[35]  Anna Nagurney,et al.  On the stability of an adjustment process for spatial price equilibrium modeled as a projected dynamical system , 1996 .

[36]  Siegfried Schaible,et al.  Quasimonotone variational inequalities in Banach spaces , 1996 .

[37]  Anna Nagurney,et al.  A projected dynamical systems model of general financial equilibrium with stability analysis , 1996 .

[38]  Anna Nagurney,et al.  Stability analysis of an adjustment process for oligopolistic market equilibrium modeld as a projected dynamical system , 1996 .

[39]  S. Schaible,et al.  Vector Equilibrium Problems with Generalized Monotone Bifunctions , 1997 .

[40]  George Isac,et al.  Topics in Nonlinear Analysis and Applications , 1997 .

[41]  Jean-Pierre Crouzeix,et al.  Pseudomonotone variational inequality problems: Existence of solutions , 1997, Math. Program..

[42]  A. Nagurney Financial Networks: Statics and Dynamics , 1997 .

[43]  Vyacheslav Kalashnikov,et al.  Exceptional Families, Topological Degree and Complementarity Problems , 1997, J. Glob. Optim..

[44]  Michael C. Ferris,et al.  Engineering and Economic Applications of Complementarity Problems , 1997, SIAM Rev..

[45]  George Isac,et al.  Functions Without Exceptional Family of Elements and Complementarity Problems , 1998 .

[46]  Didier Aussel Subdifferential Properties of Quasiconvex and Pseudoconvex Functions: Unified Approach , 1998 .

[47]  Vladimir Vasilʹevich Filippov Basic topological structures of ordinary differential equations , 1998 .

[48]  Roland Thord,et al.  Knowledge and Networks in a Dynamic Economy , 1998 .

[49]  Vyacheslav V. Kalashnikov,et al.  A Newton-like approach to solvingan equilibrium problem , 1998, Ann. Oper. Res..

[50]  Nicolas Hadjisavvas,et al.  Quasimonotonicity and Pseudomonotonicity in Variational Inequalities and Equilibrium Problems , 1998 .

[51]  Siegfried Schaible,et al.  From Scalar to Vector Equilibrium Problems in the Quasimonotone Case , 1998 .

[52]  L. Górniewicz Topological Fixed Point Theory of Multivalued Mappings , 1999 .

[53]  Nicolas Hadjisavvas,et al.  On the Subdifferentials of Quasiconvex and Pseudoconvex Functions and Cyclic Monotonicity , 1999 .

[54]  Yunbin Zhao,et al.  Exceptional Family of Elements for a Variational Inequality Problem and its Applications , 1999, J. Glob. Optim..

[55]  A. Carbone,et al.  Exceptional Families of Elements for Continuous Functions: Some Applications to Complementarity Theory , 1999, J. Glob. Optim..

[56]  Nicolas Hadjisavvas,et al.  Characterization of Nonsmooth Semistrictly Quasiconvex and Strictly Quasiconvex Functions , 1999 .

[57]  I. Konnov Combined Relaxation Methods for Variational Inequalities , 2000 .

[58]  G. Isac,et al.  Quasi-P*-Maps, P(τ, α, β)-Maps, Exceptional Family of Elements, and Complementarity Problems , 2000 .

[59]  Yun-Bin Zhao,et al.  Properties of a Multivalued Mapping Associated with Some Nonmonotone Complementarity Problems , 2000, SIAM J. Control. Optim..

[60]  George Isac,et al.  Exceptional Family of Elements and the Solvability of Variational Inequalities for Unbounded Sets in Infinite Dimensional Hilbert Spaces , 2000 .

[61]  Continuous Selections for Multivalued Mappings with Closed Convex Images and Applications , 2000 .

[62]  G. Isac Exceptional Family of Elements, Feasibility, Solvability and Continuous Paths of ε -Solutions for Nonlinear Complementarity Problems , 2000 .

[63]  L. Górniewicz,et al.  Mixed Semicontinuous Mappings and Their Applications to Differential Inclusions , 2000 .

[64]  Yun-Bin Zhao,et al.  An alternative theorem for generalized variational inequalities and solvability of nonlinear quasi-PM*-complementarity problems , 2000, Appl. Math. Comput..

[65]  Vyacheslav V. Kalashnikov,et al.  Exceptional Family of Elements, Leray–Schauder Alternative, Pseudomonotone Operators and Complementarity , 2001 .

[66]  G. Isac Leray-Schauder type alternatives and the solvability of complementarity problems , 2001 .

[67]  G. Isac,et al.  Functions without exceptional family of elements and the solvability of variational inequalities on unbounded sets , 2002 .

[68]  Zdzisław Denkowski,et al.  Set-Valued Analysis , 2021 .

[69]  George Isac Topological Methods in Complementarity Theory , 2009, Encyclopedia of Optimization.