Low-Rank Tucker Approximation of a Tensor From Streaming Data
暂无分享,去创建一个
Yang Guo | Madeleine Udell | Joel A. Tropp | Yiming Sun | Charlene Luo | J. Tropp | Madeleine Udell | Yiming Sun | Yang Guo | Charlene Luo
[1] David P. Woodruff,et al. Turnstile streaming algorithms might as well be linear sketches , 2014, STOC.
[2] Bora Uçar,et al. High Performance Parallel Algorithms for the Tucker Decomposition of Sparse Tensors , 2016, 2016 45th International Conference on Parallel Processing (ICPP).
[3] David P. Woodruff. Sketching as a Tool for Numerical Linear Algebra , 2014, Found. Trends Theor. Comput. Sci..
[4] Charalampos E. Tsourakakis. MACH: Fast Randomized Tensor Decompositions , 2009, SDM.
[5] Madeleine Udell,et al. Tensor Random Projection for Low Memory Dimension Reduction , 2021, ArXiv.
[6] Joos Vandewalle,et al. A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..
[7] M. Rudelson. Row products of random matrices , 2011, 1102.1947.
[8] Christos Boutsidis,et al. Improved Matrix Algorithms via the Subsampled Randomized Hadamard Transform , 2012, SIAM J. Matrix Anal. Appl..
[9] Guillaume Blanquart,et al. Differential diffusion effects, distributed burning, and local extinctions in high Karlovitz premixed flames , 2015 .
[10] Andrzej Cichocki,et al. Decomposition of Big Tensors With Low Multilinear Rank , 2014, ArXiv.
[11] Bernard Chazelle,et al. The Fast Johnson--Lindenstrauss Transform and Approximate Nearest Neighbors , 2009, SIAM J. Comput..
[12] Stephen Becker,et al. Low-Rank Tucker Decomposition of Large Tensors Using TensorSketch , 2018, NeurIPS.
[13] Moses Charikar,et al. Finding frequent items in data streams , 2004, Theor. Comput. Sci..
[14] S. Muthukrishnan,et al. Data streams: algorithms and applications , 2005, SODA '03.
[15] Tamara G. Kolda,et al. Scalable Tensor Decompositions for Multi-aspect Data Mining , 2008, 2008 Eighth IEEE International Conference on Data Mining.
[16] Volkan Cevher,et al. Streaming Low-Rank Matrix Approximation with an Application to Scientific Simulation , 2019, SIAM J. Sci. Comput..
[17] David P. Woodruff,et al. Low rank approximation and regression in input sparsity time , 2013, STOC '13.
[18] Tamara G. Kolda,et al. A Practical Randomized CP Tensor Decomposition , 2017, SIAM J. Matrix Anal. Appl..
[19] Peter Lindstrom,et al. TTHRESH: Tensor Compression for Multidimensional Visual Data , 2018, IEEE Transactions on Visualization and Computer Graphics.
[20] Demetri Terzopoulos,et al. Multilinear Analysis of Image Ensembles: TensorFaces , 2002, ECCV.
[21] L. Tucker,et al. Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.
[22] Dimitris Achlioptas,et al. Database-friendly random projections: Johnson-Lindenstrauss with binary coins , 2003, J. Comput. Syst. Sci..
[23] V. Rokhlin,et al. A randomized algorithm for the approximation of matrices , 2006 .
[24] Joel A. Tropp,et al. Universality laws for randomized dimension reduction, with applications , 2015, ArXiv.
[25] Tamara G. Kolda,et al. Parallel Tensor Compression for Large-Scale Scientific Data , 2015, 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
[26] Andrzej Cichocki,et al. Tensor Decompositions: A New Concept in Brain Data Analysis? , 2013, ArXiv.
[27] Benoît Meister,et al. Efficient and scalable computations with sparse tensors , 2012, 2012 IEEE Conference on High Performance Extreme Computing.
[28] Raf Vandebril,et al. A New Truncation Strategy for the Higher-Order Singular Value Decomposition , 2012, SIAM J. Sci. Comput..
[29] David P. Woodruff,et al. D ec 2 01 7 Sketching for Kronecker Product Regression and P-splines Huaian , 2018 .
[30] Yangyang Xu,et al. On the convergence of higher-order orthogonal iteration , 2015 .
[31] Alexander J. Smola,et al. Fast and Guaranteed Tensor Decomposition via Sketching , 2015, NIPS.
[32] Joel A. Tropp,et al. Improved Analysis of the subsampled Randomized Hadamard Transform , 2010, Adv. Data Sci. Adapt. Anal..
[33] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[34] Sanjeev Arora,et al. Computational Complexity: A Modern Approach , 2009 .
[35] Volkan Cevher,et al. Practical Sketching Algorithms for Low-Rank Matrix Approximation , 2016, SIAM J. Matrix Anal. Appl..
[36] Kenneth Ward Church,et al. Very sparse random projections , 2006, KDD '06.
[37] Jimeng Sun,et al. An input-adaptive and in-place approach to dense tensor-times-matrix multiply , 2015, SC15: International Conference for High Performance Computing, Networking, Storage and Analysis.
[38] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[39] Nathan Halko,et al. Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..
[40] V. Rokhlin,et al. A fast randomized algorithm for the approximation of matrices ✩ , 2007 .
[41] Philip S. Yu,et al. Incremental tensor analysis: Theory and applications , 2008, TKDD.