The short pulse hierarchy
暂无分享,去创建一个
[1] On recursion operators , 2001 .
[2] S. Okubo,et al. A systematic study of the Toda lattice , 1989 .
[3] S. Lou,et al. Symmetries of the KdV equation and four hierarchies of the integrodifferential KdV equations , 1994 .
[4] Christopher K. R. T. Jones,et al. Ultra-short pulses in linear and nonlinear media , 2004, nlin/0408020.
[5] Maciej Błaszak,et al. Multi-Hamiltonian Theory of Dynamical Systems , 1998 .
[6] J. Verosky,et al. Negative powers of Olver recursion operators , 1991 .
[7] M. Wadati,et al. Nonlinear Transverse Oscillation of Elastic Beams under Tension , 1981 .
[8] J. C. Brunelli,et al. On an integrable hierarchy derived from the isentropic gas dynamics , 2004 .
[9] S. Okubo,et al. The integrability condition for dynamical systems , 1988 .
[10] Paul Adrien Maurice Dirac,et al. Lectures on Quantum Mechanics , 2001 .
[11] Franco Magri,et al. A Simple model of the integrable Hamiltonian equation , 1978 .
[12] On the nonlocal equations and nonlocal charges associated with the Harry Dym hierarchy , 2002, nlin/0207041.
[13] Sergei Sakovich,et al. The Short Pulse Equation Is Integrable , 2005 .
[14] Deformed Harry Dym and Hunter–Zheng equations , 2003, nlin/0307043.
[15] PROPERTIES OF AN ALTERNATE LAX DESCRIPTION OF THE KdV HIERARCHY , 1995, hep-th/9501095.
[16] C. E. Wayne,et al. Propagation of ultra-short optical pulses in cubic nonlinear media , 2004 .
[17] A. Jamiołkowski. Book reviewApplications of Lie groups to differential equations : Peter J. Olver (School of Mathematics, University of Minnesota, Minneapolis, U.S.A): Graduate Texts in Mathematics, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1986, XXVI+497pp. , 1989 .
[18] Mark Adler,et al. On a trace functional for formal pseudo-differential operators and the symplectic structure of the Korteweg-devries type equations , 1978 .
[19] M. Shmakova,et al. Hierarchy of lower Korteweg–de Vries equations and supersymmetry structure of Miura transformations , 1993 .
[20] Kimiaki Konno,et al. New Integrable Nonlinear Evolution Equations , 1979 .
[21] Darryl D. Holm,et al. A New Integrable Shallow Water Equation , 1994 .
[22] J. C. Brunelli. PSEUDO: applications of streams and lazy evaluation to integrable models , 2004, Comput. Phys. Commun..