Projectibles: Optimizing Surface Color For Projection

Typically video projectors display images onto white screens, which can result in a washed out image. Projectibles algorithmically control the display surface color to increase the contrast and resolution. By combining a printed image with projected light, we can create animated, high resolution, high dynamic range visual experiences for video sequences. We present two algorithms for separating an input video sequence into a printed component and projected component, maximizing the combined contrast and resolution while minimizing any visual artifacts introduced from the decomposition. We present empirical measurements of real-world results of six example video sequences, subjective viewer feedback ratings, and we discuss the benefits and limitations of Projectibles. This is the first approach to combine a static display with a dynamic display for the display of video, and the first to optimize surface color for projection of video.

[1]  Aditi Majumder,et al.  Perceptual photometric seamlessness in projection-based tiled displays , 2005, TOGS.

[2]  Meng Li,et al.  A practical radiometric compensation method for projector-based augmentation , 2008, 2008 7th IEEE/ACM International Symposium on Mixed and Augmented Reality.

[3]  Barbara Cutler,et al.  Global Illumination Compensation for Spatially Augmented Reality , 2010, Comput. Graph. Forum.

[4]  Douglas Lanman,et al.  Cascaded displays: spatiotemporal superresolution using offset pixel layers , 2014, SIGGRAPH '14.

[5]  Takahiro Okabe,et al.  Radiometric Compensation in a Projector-Camera System Based Properties of Human Vision System , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Workshops.

[6]  Jyh-Ming Lien Point-Based Minkowski Sum Boundary , 2007, 15th Pacific Conference on Computer Graphics and Applications (PG'07).

[7]  Oliver Bimber,et al.  Superimposing dynamic range , 2008, SIGGRAPH Asia '08.

[8]  Daniel G. Aliaga,et al.  Perceptually Based Appearance Modification for Compliant Appearance Editing , 2011, Comput. Graph. Forum.

[9]  Giovanni Ramponi,et al.  Image-splitting techniques for a dual-layer high dynamic range LCD display , 2008, J. Electronic Imaging.

[10]  Oliver Bimber,et al.  Embedded entertainment with smart projectors , 2005, Computer.

[11]  Hans-Peter Seidel,et al.  Apparent display resolution enhancement for moving images , 2010, ACM Trans. Graph..

[12]  Donald P. Greenberg,et al.  A perceptually based physical error metric for realistic image synthesis , 1999, SIGGRAPH.

[13]  Gordon Wetzstein,et al.  Radiometric Compensation through Inverse Light Transport , 2007, 15th Pacific Conference on Computer Graphics and Applications (PG'07).

[14]  Oliver Bimber,et al.  Superimposing pictorial artwork with projected imagery , 2005, IEEE MultiMedia.

[15]  Wolfgang Heidrich,et al.  High dynamic range display systems , 2004, ACM Trans. Graph..

[16]  Aditi Majumder,et al.  Photometric Self-Calibration of a Projector-Camera System , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  Donald P. Greenberg,et al.  A model of visual masking for computer graphics , 1997, SIGGRAPH.

[18]  Daniel G. Aliaga,et al.  Fast high-resolution appearance editing using superimposed projections , 2012, TOGS.

[19]  Gordon Wetzstein,et al.  A compressive light field projection system , 2014, SIGGRAPH '14.

[20]  Oliver Bimber,et al.  Real-Time Adaptive Radiometric Compensation , 2008, IEEE Trans. Vis. Comput. Graph..

[21]  Makoto Omodani,et al.  Vivid image projection system using e‐Paper active screen , 2012 .

[22]  Daisuke Iwai,et al.  Projection screen reflectance control for high contrast display using photochromic compounds and UV LEDs. , 2014, Optics express.

[23]  Wolfgang Heidrich,et al.  Photometric image processing for high dynamic range displays , 2007, J. Vis. Commun. Image Represent..

[24]  Gordon Wetzstein,et al.  Radiometric Compensation through Inverse Light Transport , 2007 .

[25]  Shree K. Nayar,et al.  A Projection System with Radiometric Compensation for Screen Imperfections , 2003 .

[26]  Gordon Wetzstein,et al.  The Visual Computing of Projector‐Camera Systems , 2008, SIGGRAPH '08.

[27]  G. Ward,et al.  54.2: A High Dynamic Range Display Using Low and High Resolution Modulators , 2003 .

[28]  G. Ramponi,et al.  Minimum-Error Splitting Algorithm for a Dual Layer LCD Display—Part I: Background and Theory , 2008, Journal of Display Technology.

[29]  Mark Ashdown,et al.  Robust Content-Dependent Photometric Projector Compensation , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[30]  Joaquim Salvi,et al.  Recent progress in coded structured light as a technique to solve the correspondence problem: a survey , 1998, Pattern Recognit..

[31]  Neel Joshi,et al.  Automated video looping with progressive dynamism , 2013, ACM Trans. Graph..

[32]  Oliver Bimber,et al.  Real-Time Adaptive Radiometric Compensation , 2006, IEEE Transactions on Visualization and Computer Graphics.

[33]  Steven M. Drucker,et al.  Cliplets: juxtaposing still and dynamic imagery , 2012, UIST.