Parallel Preconditioner for Nonconforming Adini Discretization of a Plate Problem on Nonconforming Meshes

In this paper we present a domain decomposition parallel preconditioner for a discretization of a plate problem on nonconforming meshes in 2D. The local discretizations are Adini nonconforming plate finite elements. On the interfaces between adjacent subdomains two mortar conditions are imposed. The condition number of the preconditioned problem is almost optimal i.e. it is bounded poly-logarithmically with respect to the mesh parameters.

[1]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[2]  Yvon Maday,et al.  The mortar element method for three dimensional finite elements , 1997 .

[3]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[4]  P. G. Ciarlet,et al.  Basic error estimates for elliptic problems , 1991 .

[5]  S. C. Brenner,et al.  Multigrid Algorithms for C0 Interior Penalty Methods , 2006, SIAM J. Numer. Anal..

[6]  Leszek Marcinkowski Domain Decomposition Methods for Mortar Finite Element Discretizations of Plate Problems , 2001, SIAM J. Numer. Anal..

[7]  Leszek Marcinkowski,et al.  A preconditioner for a FETI-DP method for mortar element discretization of a 4th order problem in 2D. , 2011 .

[8]  Susanne C. Brenner,et al.  The condition number of the Schur complement in domain decomposition , 1999, Numerische Mathematik.

[9]  Faker Ben Belgacem,et al.  The Mortar finite element method with Lagrange multipliers , 1999, Numerische Mathematik.

[10]  Susanne C. Brenner,et al.  C0 Interior Penalty Methods for Fourth Order Elliptic Boundary Value Problems on Polygonal Domains , 2005, J. Sci. Comput..

[11]  Jacques-Louis Lions,et al.  Nonlinear partial differential equations and their applications , 1998 .

[12]  Wenbin Chen,et al.  A Multigrid Method for the Mortar-Type Morley Element Approximation of a Plate Bending Problem , 2001, SIAM J. Numer. Anal..

[13]  Leszek Marcinkowski A Neumann–Neumann algorithm for a mortar finite element discretization of fourth‐order elliptic problems in 2D , 2009 .

[14]  C. Bernardi,et al.  A New Nonconforming Approach to Domain Decomposition : The Mortar Element Method , 1994 .

[15]  Leszek Marcinkowski The Mortar Element Method with Locally Nonconforming Elements , 1999 .

[16]  Chang-Ock Lee,et al.  A Preconditioner for the FETI-DP Formulation with Mortar Methods in Two Dimensions , 2004, SIAM J. Numer. Anal..

[17]  Leszek Marcinkowski,et al.  A balancing Neumann–Neumann method for a mortar finite element discretization of a fourth order elliptic problem , 2010, J. Num. Math..

[18]  Wolfgang Dahmen,et al.  A Multigrid Algorithm for the Mortar Finite Element Method , 1999, SIAM J. Numer. Anal..

[19]  Talal Rahman,et al.  Additive Schwarz Methods for Elliptic Mortar Finite Element Problems , 2003, Numerische Mathematik.

[20]  Maksymilian Dryja,et al.  A Neumann-Neumann algorithm for a mortar discretization of elliptic problems with discontinuous coefficients , 2005, Numerische Mathematik.

[21]  Olof B. Widlund,et al.  Iterative Substructuring Preconditioners For Mortar Element Methods In Two Dimensions , 1997 .

[22]  Susanne C. Brenner,et al.  Two-level additive Schwarz preconditioners for C0 interior penalty methods , 2005, Numerische Mathematik.

[23]  Leszek Marcinkowski,et al.  Neumann–Neumann algorithms for a mortar Crouzeix–Raviart element for 2nd order elliptic problems , 2008 .