Covariance regularity and $$\mathcal {H}$$H-matrix approximation for rough random fields
暂无分享,去创建一个
[1] Helmut Harbrecht,et al. Efficient approximation of random fields for numerical applications , 2015, Numer. Linear Algebra Appl..
[2] F. Nobile,et al. Moment equations for the mixed formulation of the Hodge Laplacian with stochastic loading term , 2014 .
[3] S. Börm. Efficient Numerical Methods for Non-local Operators , 2010 .
[4] Helmut Harbrecht,et al. First order second moment analysis for stochastic interface problems based on low-rank approximation , 2013 .
[5] Helmut Harbrecht,et al. Second Moment Analysis for Robin Boundary Value Problems on Random Domains , 2014 .
[6] Mario Bebendorf,et al. Approximation of boundary element matrices , 2000, Numerische Mathematik.
[7] Leslie Greengard,et al. A fast algorithm for particle simulations , 1987 .
[8] Alexey Chernov,et al. Sparse tensor product spectral Galerkin BEM for elliptic problems with random input data on a spheroid , 2015, Adv. Comput. Math..
[9] Paul Krée,et al. Pseudo-differential operators and Gevrey classes , 1967 .
[10] Wolfgang Hackbusch,et al. Construction and Arithmetics of H-Matrices , 2003, Computing.
[11] Christoph Schwab,et al. Sparse Finite Elements for Stochastic Elliptic Problems – Higher Order Moments , 2003, Computing.
[12] W. S. Venturini. Boundary Integral Equations , 1983 .
[13] W. Hackbusch,et al. Hierarchical Matrices: Algorithms and Analysis , 2015 .
[14] Gene H. Golub,et al. Matrix computations , 1983 .
[15] Christoph Schwab,et al. hp‐FEM for second moments of elliptic PDEs with stochastic data. II: Exponential convergence for stationary singular covariance functions , 2012 .
[16] Claude Jeffrey Gittelson,et al. Adaptive stochastic Galerkin FEM , 2013 .
[17] Wolfgang Hackbusch,et al. A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.
[18] Robert T. Seeley,et al. SINGULAR INTEGRALS AND BOUNDARY VALUE PROBLEMS. , 1966 .
[19] James Hardy Wilkinson,et al. Rounding errors in algebraic processes , 1964, IFIP Congress.
[20] E. Tyrtyshnikov. Mosaic-Skeleton approximations , 1996 .
[21] Christoph Schwab,et al. hp-FEM for second moments of elliptic PDEs with stochastic data , 2010 .
[22] Helmut Harbrecht,et al. Combination technique based k-th moment analysis of elliptic problems with random diffusion , 2013, J. Comput. Phys..
[23] L. Rodino. Linear Partial Differential Operators in Gevrey Spaces , 1993 .
[24] H. Harbrecht,et al. On the low-rank approximation by the pivoted Cholesky decomposition , 2012 .
[25] Robert T. Seeley,et al. Topics in pseudo-differential operators , 2010 .
[26] L. Hörmander. The analysis of linear partial differential operators , 1990 .
[27] W. Hackbusch,et al. A Sparse ℋ-Matrix Arithmetic. , 2000, Computing.
[28] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[29] Boris N. Khoromskij,et al. A Sparse H-Matrix Arithmetic. Part II: Application to Multi-Dimensional Problems , 2000, Computing.
[30] M. Czubak,et al. PSEUDODIFFERENTIAL OPERATORS , 2020, Introduction to Partial Differential Equations.
[31] Christoph Schwab,et al. hp‐FEM for second moments of elliptic PDEs with stochastic data. I. Analytic regularity , 2012 .
[32] Fabio Nobile,et al. Low-Rank Tensor Approximation for High-Order Correlation Functions of Gaussian Random Fields , 2015, SIAM/ASA J. Uncertain. Quantification.
[33] Hermann G. Matthies,et al. Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations , 2005 .
[34] M. Shubin. Pseudodifferential Operators and Spectral Theory , 1987 .
[35] Claude Jeffrey Gittelson,et al. Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs* , 2011, Acta Numerica.
[36] Helmut Harbrecht,et al. $${\mathcal {H}}$$H-matrix Accelerated Second Moment Analysis for Potentials with Rough Correlation , 2015, J. Sci. Comput..
[37] L. Hörmander. The Analysis of Linear Partial Differential Operators III , 2007 .
[38] Fabio Nobile,et al. An Anisotropic Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..
[39] Christoph Schwab,et al. First order k-th moment finite element analysis of nonlinear operator equations with stochastic data , 2013, Math. Comput..
[40] Michael Griebel,et al. On the construction of sparse tensor product spaces , 2012, Math. Comput..
[41] Christoph Schwab,et al. Sparse finite elements for elliptic problems with stochastic loading , 2003, Numerische Mathematik.
[42] Giuseppe Da Prato,et al. Second Order Partial Differential Equations in Hilbert Spaces: Bibliography , 2002 .
[43] Paul Krée,et al. Les noyaux des opérateurs pseudo-différentiels classiques (OPDC) , 1969 .
[44] Reinhold Schneider,et al. Multilevel frames for sparse tensor product spaces , 2008, Numerische Mathematik.
[45] Reinhold Schneider,et al. Sparse second moment analysis for elliptic problems in stochastic domains , 2008, Numerische Mathematik.
[46] W. Hackbusch,et al. A sparse H -matrix arithmetic: general complexity estimates , 2000 .