Criminal incident prediction using a point-pattern-based density model

Abstract Law enforcement agencies need crime forecasts to support their tactical operations; namely, predicted crime locations for next week based on data from the previous week. Current practice simply assumes that spatial clusters of crimes or “hot spots” observed in the previous week will persist to the next week. This paper introduces a multivariate prediction model for hot spots that relates the features in an area to the predicted occurrence of crimes through the preference structure of criminals. We use a point-pattern-based transition density model for space–time event prediction that relies on criminal preference discovery as observed in the features chosen for past crimes. The resultant model outperforms the current practices, as demonstrated statistically by an application to breaking and entering incidents in Richmond, VA.

[1]  Thomas Molumby,et al.  Patterns of Crime in a University Housing Project , 1976 .

[2]  Karen Byth,et al.  The statistical analysis of spatial point patterns , 1980 .

[3]  Patricia L. Brantingham,et al.  Patterns in Crime , 1984 .

[4]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[5]  Menachem Amir Patterns in Forcible Rape , 1971 .

[6]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[7]  A. F. Smith,et al.  Statistical analysis of finite mixture distributions , 1986 .

[8]  Thomas Fiksel Simple Spatial-Temporal Models for Sequences of Geological Events , 1984, J. Inf. Process. Cybern..

[9]  B. Everitt,et al.  Finite Mixture Distributions , 1981 .

[10]  Donald E. Brown,et al.  The Regional Crime Analysis Program (ReCAP): a framework for mining data to catch criminals , 1998, SMC'98 Conference Proceedings. 1998 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.98CH36218).

[11]  Bret M. Territo,et al.  Crime analysis through computer mapping: By C.B. Block M. Dabdoub, and S. Fregly, Police Executive Research Forum, Washington D.C., 1995, paperback, xiv + 287 pp., US$29.95 (+ $3.75 s and h), ISBN 1-878734-34-2 , 1996 .

[12]  O. Newman,et al.  Defensible Space; Crime Prevention Through Urban Design. , 1973 .

[13]  Geoffrey J. McLachlan,et al.  Mixture models : inference and applications to clustering , 1989 .

[14]  G. W. Milligan,et al.  An examination of procedures for determining the number of clusters in a data set , 1985 .

[15]  André Hardy,et al.  An examination of procedures for determining the number of clusters in a data set , 1994 .

[16]  J. Simonoff Multivariate Density Estimation , 1996 .

[17]  Monica A. Walker,et al.  The urban criminal: A study in Sheffield , 1976 .

[18]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[19]  Brian Everitt,et al.  Cluster analysis , 1974 .

[20]  Patricia L. Brantingham,et al.  THE SPATIAL PATTERNING OF BURGLARY , 1975 .

[21]  Woodrow W. Nichols,et al.  Urban Structure and Criminal Mobility , 1976 .

[22]  Carolyn Rebecca Block,et al.  STAC HOT SPOT AREAS: A STATISTICAL TOOL FOR LAW ENFORCEMENT DECISIONS 1 , 1993 .

[23]  H. A. Scarr,et al.  Patterns of burglary , 1973 .

[24]  D. Kim Rossmo,et al.  A methodological model , 1993 .

[25]  Brian Everitt,et al.  An Introduction to Latent Variable Models , 1984 .

[26]  R. Mojena,et al.  Hierarchical Grouping Methods and Stopping Rules: An Evaluation , 1977, Comput. J..

[27]  P. Sopp Cluster analysis. , 1996, Veterinary immunology and immunopathology.

[28]  David W. Scott,et al.  Multivariate Density Estimation: Theory, Practice, and Visualization , 1992, Wiley Series in Probability and Statistics.