High-contrast qubit interactions using multimode cavity QED.

We introduce a new multimode cavity QED architecture for superconducting circuits that can be used to implement photonic memories, more efficient Purcell filters, and quantum simulations of photonic materials. We show that qubit interactions mediated by multimode cavities can have exponentially improved contrast for two qubit gates without sacrificing gate speed. Using two qubits coupled via a three-mode cavity system we spectroscopically observe multimode strong couplings up to 102 MHz and demonstrate suppressed interactions off resonance of 10 kHz when the qubits are ≈600  MHz detuned from the cavity resonance. We study Landau-Zener transitions in our multimode systems and demonstrate quasiadiabatic loading of single photons into the multimode cavity in 25 ns. We introduce an adiabatic gate protocol to realize a controlled-Z gate between the qubits in 95 ns and create a Bell state with 94.7% fidelity. This corresponds to an on/off ratio (gate contrast) of 1000.

[1]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[2]  Luigi Frunzio,et al.  Black-box superconducting circuit quantization. , 2012, Physical review letters.

[3]  A N Cleland,et al.  Qubit Architecture with High Coherence and Fast Tunable Coupling. , 2014, Physical review letters.

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  J. Gambetta,et al.  Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms , 2012, 1202.5533.

[6]  M S Allman,et al.  Tunable resonant and nonresonant interactions between a phase qubit and LC resonator. , 2014, Physical review letters.

[7]  Jay M. Gambetta,et al.  Improved superconducting qubit coherence using titanium nitride , 2013, 1303.4071.

[8]  E. Lucero,et al.  Planar Superconducting Resonators with Internal Quality Factors above One Million , 2012, 1201.3384.

[9]  John M. Martinis,et al.  Quantum process tomography of two-qubit controlled-Z and controlled-NOT gates using superconducting phase qubits , 2010, 1006.5084.

[10]  Andrew W. Cross,et al.  Implementing a strand of a scalable fault-tolerant quantum computing fabric , 2013, Nature Communications.

[11]  J M Gambetta,et al.  Tunable coupling in circuit quantum electrodynamics using a superconducting charge qubit with a V-shaped energy level diagram. , 2011, Physical review letters.

[12]  L. DiCarlo,et al.  Fast reset and suppressing spontaneous emission of a superconducting qubit , 2010, 1003.0142.

[13]  Alexandre Blais,et al.  First-order sideband transitions with flux-driven asymmetric transmon qubits , 2013 .

[14]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[15]  Jerry Chow,et al.  Detecting highly entangled states with a joint qubit readout , 2010 .

[16]  L. DiCarlo,et al.  Entanglement genesis by ancilla-based parity measurement in 2D circuit QED. , 2013, Physical review letters.

[17]  M Weides,et al.  Fast tunable coupler for superconducting qubits. , 2011, Physical review letters.

[18]  J. Koch,et al.  Circuit QED lattices: Towards quantum simulation with superconducting circuits , 2012, 1212.2070.

[19]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[20]  Daniel Sank,et al.  Flux noise probed with real time qubit tomography in a Josephson phase qubit. , 2012, Physical review letters.

[21]  Andrew G. Glen,et al.  APPL , 2001 .

[22]  Yasunobu Nakamura,et al.  Improving quantum gate fidelities by using a qubit to measure microwave pulse distortions. , 2012, Physical review letters.

[23]  F. K. Wilhelm,et al.  Single-qubit gates in frequency-crowded transmon systems , 2013, 1306.2279.

[24]  T. Ralph,et al.  Quantum process tomography of a controlled-NOT gate. , 2004, Physical review letters.

[25]  John M. Martinis,et al.  Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing , 2014 .

[26]  Jens Koch,et al.  Controlling the spontaneous emission of a superconducting transmon qubit. , 2008, Physical review letters.

[27]  Daniel Sank,et al.  Fast accurate state measurement with superconducting qubits. , 2014, Physical review letters.

[28]  Luigi Frunzio,et al.  Optimized driving of superconducting artificial atoms for improved single-qubit gates , 2010 .

[29]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[30]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[31]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[32]  Andrew G. White,et al.  Measurement of qubits , 2001, quant-ph/0103121.

[33]  Jay M. Gambetta,et al.  Preparation and measurement of three-qubit entanglement in a superconducting circuit , 2010, Nature.

[34]  Franco Nori,et al.  Quantum supercavity with atomic mirrors , 2008, 0809.4063.

[35]  Marcus P. da Silva,et al.  Implementation of a Toffoli gate with superconducting circuits , 2011, Nature.

[36]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[37]  F. Wilhelm,et al.  Multimode circuit quantum electrodynamics with hybrid metamaterial transmission lines. , 2013, Physical review letters.

[38]  Erik Lucero,et al.  Implementing the Quantum von Neumann Architecture with Superconducting Circuits , 2011, Science.

[39]  J. Gambetta,et al.  Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits. , 2012, Physical review letters.