Analytic Model of Coax-Fed Printed Metasurfaces and Analysis of Antenna Parameters

We present a model for waveguide-backed metasurface antennas fed by one or more coaxial ports and compute key antenna parameters using the model. The metasurface antenna consists of a coax-fed planar waveguide/cavity embedded with subwavelength-sized metamaterial radiators that convert energy from the guided mode into a radiated wave. Designing a metasurface requires tailoring the geometry of the individual metamaterial elements and arranging them over the aperture to achieve a desired radiation pattern—a typically cumbersome and time-consuming task when performed with full-wave solvers. In recent work, a coupled-dipole approach has been applied to modeling metasurfaces that significantly accelerates the design process by avoiding reliance on full-wave simulations or experimental trials. In this article, we extend the coupled-dipole model of a metasurface by including the analytic model of a coaxial port. Using the reaction and equivalent circuit model of a coaxial-to-waveguide transition, we also propose an efficient method to compute the input impedance of a metasurface, enabling the calculation of gain and efficiency. Close agreement between the proposed model and full-wave studies is demonstrated. The proposed method can find utility as an effective tool for the design and optimization of metasurfaces for applications including wireless communication systems, imaging, and wireless power transfer.

[1]  David R. Smith,et al.  Analysis of a Waveguide-Fed Metasurface Antenna , 2017, 1711.01448.

[2]  Ariel Epstein,et al.  Cavity-excited Huygens' metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures , 2015, Nature Communications.

[3]  David R. Smith,et al.  Enhancing Capacity of Spatial Multiplexing Systems Using Reconfigurable Cavity-Backed Metasurface Antennas in Clustered MIMO Channels , 2019, IEEE Transactions on Communications.

[4]  Discrete dipole approximation for the simulation of the edge effects on metasurfaces , 2016, 2016 IEEE International Symposium on Antennas and Propagation (APSURSI).

[5]  Jerry L. Eaves,et al.  Introduction to Radar , 1987 .

[6]  D. Sievenpiper,et al.  Scalar and Tensor Holographic Artificial Impedance Surfaces , 2010, IEEE Transactions on Antennas and Propagation.

[7]  Y. Rahmat-Samii,et al.  Particle swarm optimization in electromagnetics , 2004, IEEE Transactions on Antennas and Propagation.

[8]  S. Brunton,et al.  Extremum-seeking control of the beam pattern of a reconfigurable holographic metamaterial antenna. , 2016, Journal of the Optical Society of America. A, Optics, image science, and vision.

[9]  M. Vera-Isasa,et al.  Analysis of slot antennas on a radial transmission line , 1996 .

[10]  Robert J. Mailloux,et al.  Electronically Scanned Arrays , 2007, Electronically Scanned Arrays.

[11]  Constantine A. Balanis,et al.  Introduction to Smart Antennas , 2007, Introduction to Smart Antennas.

[12]  D. Parker,et al.  Phased arrays - part 1: theory and architectures , 2002 .

[13]  S. Maci,et al.  Metasurfing: Addressing Waves on Impenetrable Metasurfaces , 2011, IEEE Antennas and Wireless Propagation Letters.

[14]  R.L. Eisenhart,et al.  A Matched Coaxial-Radial Transmission Line Junction , 1978, 1978 IEEE-MTT-S International Microwave Symposium Digest.

[15]  Laura Pulido-Mancera,et al.  Analytic Model of a Coax-Fed Planar Cavity-Backed Metasurface Antenna for Pattern Synthesis , 2019, IEEE Transactions on Antennas and Propagation.

[16]  D. Parker,et al.  Phased arrays-part II: implementations, applications, and future trends , 2002 .

[17]  C. Tai,et al.  Dyadic green functions in electromagnetic theory , 1994 .

[18]  David R. Smith,et al.  Polarizability extraction of complementary metamaterial elements in waveguides for aperture modeling , 2017 .

[19]  J. D. Krauss Antennas For All Applications , 1950 .

[20]  David R. Smith,et al.  Large Metasurface Aperture for Millimeter Wave Computational Imaging at the Human-Scale , 2017, Scientific Reports.

[21]  David R. Smith,et al.  Modeling Metamaterial Element in Dielectric-filled Waveguide-fed Metasurface Antennas , 2019, 2019 URSI International Symposium on Electromagnetic Theory (EMTS).

[22]  David R. Smith,et al.  Printed Aperiodic Cavity for Computational and Microwave Imaging , 2016, IEEE Microwave and Wireless Components Letters.

[23]  Hyok J. Song,et al.  Two-dimensional beam steering using an electrically tunable impedance surface , 2003 .

[24]  D. V. Otto,et al.  The Admittance of Cylindrical Antennas Driven From a Coaxial Line , 1967 .

[25]  Jennifer Urner,et al.  Antenna Theory And Design , 2016 .

[26]  Thomas Fromenteze,et al.  Experimental Synthetic Aperture Radar With Dynamic Metasurfaces , 2017, IEEE Transactions on Antennas and Propagation.

[27]  Matthew S. Reynolds,et al.  Waveguide-Fed Tunable Metamaterial Element for Dynamic Apertures , 2016, IEEE Antennas and Wireless Propagation Letters.

[28]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[29]  David R. Smith,et al.  Efficient complementary metamaterial element for waveguide-fed metasurface antennas. , 2016, Optics express.

[30]  S. Brunton,et al.  Sidelobe Canceling for Reconfigurable Holographic Metamaterial Antenna , 2014, IEEE Transactions on Antennas and Propagation.

[31]  R. Harrington Time-Harmonic Electromagnetic Fields , 1961 .

[32]  Matthew S. Reynolds,et al.  An analysis of beamed wireless power transfer in the Fresnel zone using a dynamic, metasurface aperture , 2016, 1610.06799.

[33]  Constantine A. Balanis,et al.  Modern Antenna Handbook , 2012 .

[34]  Yahya Rahmat-Samii,et al.  Electromagnetic Optimization by Genetic Algorithms , 1999 .

[35]  Laura Pulido-Mancera,et al.  Analytical Modeling of a Two-Dimensional Waveguide-Fed Metasurface , 2018, 1807.11592.

[36]  David R. Smith,et al.  Analytical modeling of printed metasurface cavities for computational imaging , 2016 .

[37]  Amit M. Patel,et al.  Effective Surface Impedance of a Printed-Circuit Tensor Impedance Surface (PCTIS) , 2013, IEEE Transactions on Microwave Theory and Techniques.

[38]  David R. Smith,et al.  Focusing Microwaves in the Fresnel Zone With a Cavity-Backed Holographic Metasurface , 2018, IEEE Access.

[39]  David R. Smith,et al.  Dynamic metamaterial aperture for microwave imaging , 2015 .

[40]  H. Bethe Theory of Diffraction by Small Holes , 1944 .

[41]  A. G. Williamson Equivalent circuit for radial-line/coaxial-line junction , 1981 .

[42]  Arthur A. Oliner,et al.  Phased array antennas , 1972 .

[43]  Jeffrey S. Herd,et al.  The Evolution to Modern Phased Array Architectures , 2016, Proceedings of the IEEE.

[44]  Generalized network representations for small-aperture coupling between dissimilar regions , 1983 .

[45]  R. Harrington,et al.  An admittance solution for electromagnetic coupling through a small aperture , 1983 .

[46]  Dipak L. Sengupta,et al.  Theory of dielectric-filled edge-slot antennas , 1980 .

[47]  David R Smith,et al.  Phaseless computational ghost imaging at microwave frequencies using a dynamic metasurface aperture. , 2018, Applied optics.

[48]  David R. Smith,et al.  Metamaterial Apertures for Computational Imaging , 2013, Science.

[49]  Willie J Padilla,et al.  Complementary planar terahertz metamaterials. , 2007, Optics express.

[50]  R. E. Collin,et al.  SMALL APERTURE COUPLING BETWEEN DISSIMILAR REGIONS , 1982 .

[51]  David R. Smith,et al.  Metamaterial apertures for coherent computational imaging on the physical layer. , 2013, Journal of the Optical Society of America. A, Optics, image science, and vision.

[52]  David R. Smith,et al.  Effective-medium description of a metasurface composed of a periodic array of nanoantennas coupled to a metallic film , 2017 .

[53]  Robert J. Mailloux,et al.  Phased Array Antenna Handbook , 1993 .

[54]  Thomas Fromenteze,et al.  Synthetic aperture radar with dynamic metasurface antennas: a conceptual development. , 2017, Journal of the Optical Society of America. A, Optics, image science, and vision.