Stability evaluation of Neural and statistical Classifiers based on Modified Semi-bounded Plug-in Algorithm

—This paper illustrates a new criterion for evaluating neural networks stability compared to the Bayesian classifier. The stability comparison is performed by the error rate probability densities estimation using the modified semi-bounded Plug-in algorithm. We attempt, in this work, to demonstrate that the Bayesian approach for neural networks improves the performance and stability degree of the classical neural classifiers.

[1]  Faouzi Ghorbel,et al.  Non–parametric probability density function estimation on a bounded support: Applications to shape classification and speech coding , 1994 .

[2]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[3]  F. Ghorbel,et al.  The Generalised Plug-in Algorithm for the Diffeomorphism Kernel Estimate , 2021, International Journal of Mathematics and Computers in Simulation.

[4]  Faouzi Ghorbel,et al.  An Iterative Soft Bit Error Rate Estimation of Any Digital Communication Systems Using a Nonparametric Probability Density Function , 2009, EURASIP J. Wirel. Commun. Netw..

[5]  Guoqiang Peter Zhang,et al.  Neural networks for classification: a survey , 2000, IEEE Trans. Syst. Man Cybern. Part C.

[7]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[8]  Steven K. Rogers,et al.  An Introduction to Biological and Artificial Neural Networks for Pattern Recognition , 1991 .

[9]  Mukta Paliwal,et al.  Neural networks and statistical techniques: A review of applications , 2009, Expert Syst. Appl..

[10]  Pavel Pudil,et al.  Introduction to Statistical Pattern Recognition , 2006 .

[11]  Sholom M. Weiss,et al.  Computer Systems That Learn , 1990 .

[12]  Michael Y. Hu,et al.  Two-Group Classification Using Neural Networks* , 1993 .

[13]  Melody Y. Kiang,et al.  Managerial Applications of Neural Networks: The Case of Bank Failure Predictions , 1992 .

[14]  L. Cooper,et al.  When Networks Disagree: Ensemble Methods for Hybrid Neural Networks , 1992 .

[15]  Hervé Bourlard,et al.  Generalization and Parameter Estimation in Feedforward Netws: Some Experiments , 1989, NIPS.

[16]  Avinash C. Kak,et al.  PCA versus LDA , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Faouzi Ghorbel Towards a unitary formulation for invariant image description: application to image coding , 1998, Ann. des Télécommunications.

[18]  Oleksandr Makeyev,et al.  Neural network with ensembles , 2010, The 2010 International Joint Conference on Neural Networks (IJCNN).

[19]  R. Lepage,et al.  Les réseaux de neurones artificiels et leurs applications en imagerie et en vision par ordinateur , 2003 .

[20]  Elie Bienenstock,et al.  Neural Networks and the Bias/Variance Dilemma , 1992, Neural Computation.

[21]  David J. C. MacKay,et al.  A Practical Bayesian Framework for Backpropagation Networks , 1992, Neural Computation.

[22]  Usha A. Kumar,et al.  Comparison of neural networks and regression analysis: A new insight , 2005, Expert Syst. Appl..

[23]  Faouzi Ghorbel,et al.  Some statistical properties of the kernel-diffeomorphism estimator , 1997 .