Fracture behaviour of microcrack-free alumina–aluminium titanate ceramics with second phase nanoparticles at alumina grain boundaries

[1]  A. Evans,et al.  Crack‐Growth Resistance of Microcracking Brittle Materials , 2006 .

[2]  C. Baudín,et al.  Mechanical behaviour of directionally solidified alumina/aluminium titanate ceramics , 2006 .

[3]  T. Kosmač,et al.  Preparation and properties of aluminium titanate-alumina composites with a corrugated microstructure , 2006 .

[4]  I. Low,et al.  Effect of β-spodumene on the phase development in an alumina/aluminium-titanate system , 2005 .

[5]  C. Baudín,et al.  Design and processing of Al2O3–Al2TiO5 layered structures , 2005 .

[6]  J. Rödel,et al.  Measurement of Crack Tip Toughness in Alumina as a Function of Grain Size , 2005 .

[7]  C. Baudín,et al.  Reaction sintered Al2O3/Al2TiO5 microcrack-free composites obtained by colloidal filtration , 2004 .

[8]  Keisuke Tanaka,et al.  R-curve behavior in fracture of notched porous ceramics , 2003 .

[9]  C. Baudín,et al.  Influence of a Dispersion of Aluminum Titanate Particles of Controlled Size on the Thermal Shock Resistance of Alumina , 2003 .

[10]  Gilbert Fantozzi,et al.  R-curve evaluation and bridging stress determination in alumina by compliance analysis , 2003 .

[11]  Theo Fett,et al.  Influence of specimen geometry and relative crack size on the R-curve , 2000 .

[12]  R. P. Uribe,et al.  Formación de titanato de aluminio por reacción en estado sólido de alumina y titania , 2000 .

[13]  F. I. Baratta,et al.  Crack Stability and Its Effect on Fracture Toughness of Hot‐Pressed Silicon Nitride Beam Specimens , 1996 .

[14]  D. Munz,et al.  Correlation between long and short crack R-curves in alumina using the crack opening displacement and fracture mechanical weight function approach , 1996 .

[15]  Jacques Lamon,et al.  Fracture Toughness of 2‐D Woven SiC/SiC CVI‐Composites with Multilayered Interphases , 1996 .

[16]  V. Li,et al.  New development of the J-based fracture testing technique for ceramic-matrix composites , 1994 .

[17]  F. Guiu,et al.  The application of the J integral to problems of crack bridging , 1994 .

[18]  H. M. Chan,et al.  Flaw-tolerance and crack-resistance properties of alumina-aluminum titanate composites with tailored microstructures , 1993 .

[19]  B. Lawn,et al.  Model for Toughness Curves in Two‐Phase Ceramics: I, Basic Fracture Mechanics , 1993 .

[20]  B. Lawn,et al.  Model for Toughness Curves in Two‐Phase Ceramics: II, Microstructural Variables , 1993 .

[21]  Theo Fett,et al.  Evaluation of R-curve effects in ceramics , 1993 .

[22]  M. Harmer,et al.  Unique Opportunities for Microstructural Engineering with Duplex and Laminar Ceramic Composites , 1992 .

[23]  J. Rödel,et al.  In Situ Measurements of Bridged Crack Interfaces in the Scanning Electron Microscope , 1990 .

[24]  B. Lawn,et al.  Role of grain size in the strength and R-curve properties of alumina , 1990 .

[25]  R. Steinbrech,et al.  R‐Curve Behavior of Long Cracks in Alumina , 1990 .

[26]  A. Evans Perspective on the Development of High‐Toughness Ceramics , 1990 .

[27]  M. Inagaki,et al.  R‐Curve Behavior of a Polycrystalline Graphite: Microcracking and Grain Bridging in the Wake Region , 1988 .

[28]  R. Steinbrech,et al.  Determination of Crack‐Bridging Forces in Alumina , 1988 .

[29]  K. Kromp,et al.  Crack resistance curves of alumina and zirconia at room temperature , 1986 .

[30]  M. Swain,et al.  Dependence of Fracture Toughness of Alumina on Grain Size and Test Technique , 1982 .

[31]  R. Steinbrech,et al.  Memory effect of crack resistance during slow crack growth in notched Al2O3 bend specimens , 1982 .

[32]  S. Freiman,et al.  Grain‐Size Dependence of Fracture Energy in Ceramics: I, Experiment , 1981 .

[33]  R. C. Bradt,et al.  J‐Integral Measurements of the Fracture of 50% Alumina Refractories , 1980 .

[34]  C. C. Wu,et al.  Microstructural aspects of crack propagation in ceramics , 1978 .

[35]  S. Wiederhorn Fracture of Sapphire , 1969 .

[36]  J. Rice A path-independent integral and the approximate analysis of strain , 1968 .

[37]  R. Davidge,et al.  The effective surface energy of brittle materials , 1968 .

[38]  R. Fullman Measurement of Particle Sizes in Opaque Bodies , 1953 .

[39]  C. Baudín,et al.  Non-destructive characterisation of alumina/aluminium titanate composites using a micromechanical model and ultrasonic determinations: Part II. Evaluation of microcracking , 2008 .

[40]  C. Baudín,et al.  Layered materials with high strength and flaw tolerance based on alumina and aluminium titanate , 2007 .

[41]  M. Elices,et al.  Stress Intensity factor, compliance and CMOD for a General Three-Point-Bend Beam , 1998 .

[42]  O. Sbaizero,et al.  Fracture energy and R-curve behavior of Al2O3/Mo composites , 1998 .

[43]  R. Danzer,et al.  Critical notch-root radius effect in SENB-S fracture toughness testing , 1996 .

[44]  M. Matthewson,et al.  Mechanical properties of ceramics , 1996 .

[45]  R. Steinbrech Toughening mechanisms for ceramic materials , 1992 .

[46]  M. Swain,et al.  KR‐Curve Behavior of Duplex Ceramics , 1991 .

[47]  S. Bennison,et al.  Fabrication of flaw-tolerant aluminum-titanate-reinforced alumina , 1991 .

[48]  G. Gogotsi The use of brittleness measure (ξ) to represent mechanical behaviour of ceramics , 1989 .

[49]  M. Swain,et al.  Grain‐Size Dependence of Fracture Energy in Ceramics , 1982 .

[50]  W. Jillek,et al.  Sub-critical crack extension and crack resistance in polycrystalline alumina , 1977 .

[51]  L. A. Simpson Effect of Microstructure on Measurements of Fracture Energy of Al2O3 , 1973 .