Metallic magnesium nano/mesoscale structures: their shape-controlled preparation and mg/air battery applications.

[1]  M. El-Sayed,et al.  Chemistry and properties of nanocrystals of different shapes. , 2005, Chemical reviews.

[2]  Jin-Song Hu,et al.  Pt hollow nanospheres: facile synthesis and enhanced electrocatalysts. , 2004, Angewandte Chemie.

[3]  Xun Wang,et al.  Thermally stable silicate nanotubes. , 2004, Angewandte Chemie.

[4]  Yadong Yin,et al.  Synthesis and Characterization of MgO Nanowires Through a Vapor‐Phase Precursor Method , 2002 .

[5]  N. Munichandraiah,et al.  A new magnesium — air cell for long-life applications , 1981 .

[6]  Xin Zhang,et al.  Novel operation and control of an electric vehicle aluminum/air battery system , 2004 .

[7]  F. Pederiva,et al.  Helical multishell structures of magnesium nanowires , 2004 .

[8]  H. Imamura,et al.  Preparation and hydriding behavior of magnesium metal clusters formed in low-temperature cocondensation: application of magnesium for hydrogen storage , 1984 .

[9]  J. Cowan,et al.  The Biological chemistry of magnesium , 1995 .

[10]  K. Striebel,et al.  La0.6Ca0.4CoO3: a stable and powerful catalyst for bifunctional air electrodes , 1994 .

[11]  B. Bogdanović Katalytische Synthese von Organolithium‐ und ‐magnesium‐Verbindungen sowie von Lithium‐ und Magnesiumhydriden – Anwendungen in der organischen Synthese und als Wasserstoffspeicher , 1985 .

[12]  Synthesis of ultrathin zinc nanowires and nanotubes by vapor transport. , 2005, Angewandte Chemie.

[13]  Charles T. Campbell,et al.  The Active Site in Nanoparticle Gold Catalysis , 2004, Science.

[14]  R. Hamlen,et al.  Anodes for Refuelable Magnesium‐Air Batteries , 1969 .

[15]  Thomas Lippert,et al.  Ln1-xAxCoO3 (Ln = Er, La; A = Ca, Sr)/carbon nanotube composite materials applied for rechargeable Zn/air batteries , 2002 .

[16]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[17]  A. Govindaraj,et al.  A New Method for the Preparation of Metal Nanowires by the Nebulized Spray Pyrolysis of Precursors , 2004 .

[18]  O. Haas,et al.  Modeling of an electrically rechargeable alkaline Zn–air battery , 2002 .

[19]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .

[20]  Jun Chen,et al.  High‐Power Alkaline Zn–MnO2 Batteries Using γ‐MnO2 Nanowires/Nanotubes and Electrolytic Zinc Powder , 2005 .

[21]  M. Winter,et al.  What are batteries, fuel cells, and supercapacitors? , 2004, Chemical reviews.

[22]  Li Lu,et al.  Magnesium nanocomposite via mechanochemical milling , 2004 .

[23]  P. Peshev,et al.  Hydrogen sorption properties of graphite-modified magnesium nanocomposites prepared by ball-milling , 2004 .

[24]  Jun Chen,et al.  α‐Fe2O3 Nanotubes in Gas Sensor and Lithium‐Ion Battery Applications , 2005 .

[25]  P. J. Sebastian,et al.  Studies on the oxygen reduction catalyst for zinc–air battery electrode , 2003 .

[26]  P. Dai,et al.  Magnesium/methanol: an effective reducing agent for peroxides. , 2004, Journal of Organic Chemistry.

[27]  J. H. van Lenthe,et al.  Hydrogen storage in magnesium clusters: quantum chemical study. , 2005, Journal of the American Chemical Society.

[28]  B. Bogdanovic Catalytic Synthesis of Organolithium and Organomagnesium Compounds and of Lithium and Magnesium Hydrides—Applications in Organic Synthesis and Hydrogen Storage , 1985 .

[29]  Alexander Wokaun,et al.  Nanoparticles in energy technology: examples from electrochemistry and catalysis. , 2005, Angewandte Chemie.

[30]  E. Levi,et al.  Prototype systems for rechargeable magnesium batteries , 2000, Nature.

[31]  T. Kiyobayashi,et al.  Metal hydride fuel cell with intrinsic capacity , 2002 .

[32]  Jie Xu,et al.  Chemical Reactivities of Magnesium Nanopowders , 2001 .

[33]  R. Kötz,et al.  Nanopartikel in der Energietechnik – Beispiele aus der Elektrochemie und Katalyse , 2005 .