A dual‐level Shepard interpolation method for generating potential energy surfaces for dynamics calculations

We present a new dual‐level approach to representing potential energy surfaces in which a very small number of high‐level electronic structure calculations are combined with a lower‐level global surface, e.g., one defined implicitly by neglect‐of‐diatomic‐differential‐overlap calculations with specific reaction parameters, to generate the potential at any geometry where it may be needed. We interpolate the potential energy surface with a small number of accurate data points (the higher level) that are placed along the reaction path by using information on the global shape of the potential from less accurate calculations (the lower level). We confirm the findings of Ischtwan and Collins on the usefulness of single‐level schemes including Hessians, and we delineate the regime of usefulness of single‐level schemes based on gradients or even single‐point energies. Furthermore we find that dual‐level interpolation can offer cost savings over single‐level schemes, and dual‐level methods employing Hessians, grad...

[1]  Donald G. Truhlar,et al.  Parameterization of NDDO wavefunctions using genetic algorithms. An evolutionary approach to parameterizing potential energy surfaces and direct dynamics calculations for organic reactions , 1995 .

[2]  H. Schlegel,et al.  Ab initio classical trajectory study of H2CO+H2 + CO dissociation , 1994 .

[3]  Y. Yamaguchi,et al.  A New Dimension to Quantum Chemistry: Analytic Derivative Methods in AB Initio Molecular Electronic Structure Theory , 1994 .

[4]  E. Carter,et al.  Time-Reversible Multiple Time Scale ab Initio Molecular Dynamics , 1993 .

[5]  M. Suhm Multidimensional vibrational quantum Monte Carlo technique using robust interpolation from static or growing sets of discrete potential energy points , 1993 .

[6]  Àngels González-Lafont,et al.  Direct dynamics calculation of the kinetic isotope effect for an organic hydrogen-transfer reaction, including corner-cutting tunneling in 21 dimensions , 1993 .

[7]  Donald G. Truhlar,et al.  Molecular modeling of the kinetic isotope effect for the [1,5]-sigmatropic rearrangement of cis-1,3-pentadiene , 1993 .

[8]  T. Helgaker,et al.  Dynamics of the reaction CH2OH+ .fwdarw. CHO+ + H2. Translational energy release from ab initio trajectory calculations , 1992 .

[9]  Donald G. Truhlar,et al.  Optimized calculations of reaction paths and reaction‐path functions for chemical reactions , 1992 .

[10]  Peter Pulay,et al.  Geometry optimization in redundant internal coordinates , 1992 .

[11]  A. Warshel,et al.  The dynamics of the primary event in rhodopsins revisited , 1991 .

[12]  D. Truhlar,et al.  Temperature dependence of the kinetic isotope effect for a gas-phase SN2 reaction: Cl- + CH3Br , 1991 .

[13]  M. Challacombe,et al.  Coordinate transformations of cubic force constants and transferability of anharmonic force constants in internal coordinates , 1991 .

[14]  D. Truhlar,et al.  Direct dynamics calculations with NDDO (neglect of diatomic differential overlap) molecular orbital theory with specific reaction parameters , 1991 .

[15]  D. Truhlar,et al.  Reaction path power series analysis of NH3 inversion , 1990 .

[16]  James J. P. Stewart,et al.  MOPAC: A semiempirical molecular orbital program , 1990, J. Comput. Aided Mol. Des..

[17]  M. Gordon,et al.  Ab initio reaction paths and direct dynamics calculations , 1989 .

[18]  J. Stewart Optimization of parameters for semiempirical methods I. Method , 1989 .

[19]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[20]  Robert J. Renka,et al.  Multivariate interpolation of large sets of scattered data , 1988, TOMS.

[21]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[22]  J. Mason,et al.  Algorithms for approximation , 1987 .

[23]  Poul Jørgensen,et al.  Geometrical derivatives of energy surfaces and molecular properties , 1986 .

[24]  Peter Lancaster,et al.  Curve and surface fitting - an introduction , 1986 .

[25]  Eamonn F. Healy,et al.  Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model , 1985 .

[26]  D. Truhlar Potential Energy Surfaces and Dynamics Calculations , 1981 .

[27]  W. J. Gordon,et al.  Shepard’s method of “metric interpolation” to bivariate and multivariate interpolation , 1978 .

[28]  Walter Thiel,et al.  Ground States of Molecules. 38. The MNDO Method. Approximations and Parameters , 1977 .

[29]  J. Watson Vibrational Spectra and Structure , 1977 .

[30]  D. J. Malcolme-Lawes Dynamics of some hydrogen isotopic exchange reactions at high energies , 1975 .

[31]  M. Karplus,et al.  Dyanmics of organic reactions , 1973 .

[32]  Peter Pulay,et al.  Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules , 1969 .

[33]  J. Pople,et al.  Approximate Self-Consistent Molecular Orbital Theory. I. Invariant Procedures , 1965 .

[34]  B. Crawford,et al.  The Determination of Normal Coordinates , 1951 .