Clustering Relational Data Using Attribute and Link Information

is a descriptive task that seeks to identify natural groupings in data. Relational data offer a wealth of information for identifying groups of similar items. Both attribute information and the structure of relationships can be used for clustering. Graph partitioning and data clustering techniques can be applied independently to relational data but a technique that exploits both sources of information simultaneously may produce more meaningful clusters. This paper will describe our work synthesizing data clustering and graph partitioning techniques into improved clustering algorithms for rela-tional data.