Survey of diagnostic tools used in hypervelocity impact studies

Abstract This paper surveys a variety of diagnostic tools that are available for use in studies of hypervelocity impact. Emphasis is on time-resolved methods for measuring pressure or particle velocity histories of stress waves induced under these conditions, and on the new developments of the past decade.

[1]  J. N. Fritz,et al.  An Electromagnetic Technique for Measuring Material Velocity , 1973 .

[2]  H. Kawai,et al.  The Piezoelectricity of Poly (vinylidene Fluoride) , 1969 .

[3]  G. Lyzenga,et al.  Multiwavelength optical pyrometer for shock compression experiments. , 1979, The Review of scientific instruments.

[4]  Y. Gupta Determination of the impact response of PMMA using combined compression and shear loading , 1980 .

[5]  C. Konrad,et al.  SHOCK-INDUCED LUMINESCENCE FROM X-CUT QUARTZ AND Z-CUT LITHIUM NIOBATE , 1984 .

[6]  F. Bauer,et al.  PVF2 polymers: Ferroelectric polarization and piezoelectric properties under dynamic pressure and shock wave action , 1983 .

[7]  A. Dremin,et al.  Investigation of singularities of glass strain under intense compression waves , 1977 .

[8]  R. J. Clifton,et al.  The oblique-plate impact experiment , 1976 .

[9]  L. M. Barker Velocity Interferometry For Time-Resolved High-Velocity Measurements , 1984, Optics & Photonics.

[10]  J. Wise REFRACTIVE INDEX AND EQUATION OF STATE OF A SHOCK-COMPRESSED AQUEOUS SOLUTION OF ZINC CHLORIDE , 1984 .

[11]  Y. Gupta Stress measurements using piezoresistance gauges: Modeling the gauge as an elastic‐plastic inclusion , 1983 .

[12]  T. Trucano,et al.  High Pressure Strength of Shocked Aluminum , 1986 .

[13]  L. P. Mix,et al.  Ejection of material from shocked surfaces , 1976 .

[14]  J. Swegle,et al.  Dynamic pressure‐shear loading of materials using anisotropic crystals , 1980 .

[15]  R. S. Caird,et al.  Application Of Optical-Fiber Pins To Explosive, Pulse-Power Generators , 1984, Optics & Photonics.

[16]  G. D. Anderson,et al.  EQUATION OF STATE OF ROCKS. , 1968 .

[17]  R. E. Setchell Index of refraction of shock-compressed fused silica and sapphire , 1979 .

[18]  Kunihito Nagayama,et al.  KEYED-POWDER GUN FOR THE OBLIQUE-IMPACT SHOCK STUDY OF SOLIDS IN SEVERAL 10 s OF GPa REGION. , 1984 .

[19]  J. Swegle A suggested technique for determining in‐material longitudinal and shear particle velocity histories in a single‐inclined‐plate impact experiment , 1978 .

[20]  Determination of mean and deviatoric stresses in shock loaded solids , 1982 .

[21]  R. Graham,et al.  Shock-wave compression of sapphire from 15 to 420 kbar. The effects of large anisotropic compressions , 1971 .

[22]  Y. Partom,et al.  Release wave calibration of manganin gauges , 1980 .

[23]  Rodney J. Clifton,et al.  A combined normal‐ and transverse‐displacement interferometer with an application to impact of y‐cut quartz , 1977 .

[24]  D. D. Bloomquist,et al.  Optically Recording Velocity Interferometer System (ORVIS) For Subnanosecond Particle Velocity Measurements In Shock Waves , 1983, Other Conferences.

[25]  R. E. Setchell Ramp-wave initiation of granular explosives , 1981 .

[26]  Y. Partom,et al.  Theoretical account for the response of manganin gauges , 1981 .

[27]  Y. Partom,et al.  Calibration of foil‐like manganin gauges in planar shock wave experiments , 1980 .

[28]  W. Nellis,et al.  Equation of state and optical luminosity of benzene, polybutene, and polyethylene shocked to 210 GPa (2.1 Mbar) , 1984 .

[29]  D. D. Keough,et al.  Measurement of lateral compressive stresses under shock loading , 1980 .

[30]  D. Grady,et al.  Quartz to stishovite: Wave propagation in the mixed phase region , 1974 .

[31]  Donald R. Curran,et al.  Response of Solids to Shock Waves. , 1971 .

[32]  T. J. Burgess,et al.  Free Surface Velocity Measurement of an Impacted Projectile by Optical Doppler Shift , 1968 .

[33]  L. M. Barker,et al.  Shock‐Wave Studies of PMMA, Fused Silica, and Sapphire , 1970 .

[34]  Y. Partom,et al.  Lateral stress measurement in shock-loaded targets with transverse piezoresistance gauges , 1985 .

[35]  D. Grady High-Pressure Release-Wave Measurements and Phase Transformation in CaCO3 , 1986 .

[36]  Y. Gupta Shear measurements in shock‐loaded solids , 1976 .

[37]  Y. Gupta Shear and compression wave measurements in shocked polycrystalline Al2O3 , 1983 .

[38]  R. Graham,et al.  Shock compression of solids , 1979 .

[39]  Robert F. Benjamin,et al.  Microshell®-Tipped Optical Fibers As Sensors Of High-Pressure Pulses In Adverse Environments , 1984, Optics & Photonics.

[40]  P. A. Urtiew Effect of shock loading on transparency of sapphire crystals , 1974 .

[41]  Akira Sawaoka,et al.  Dynamic response of fused quartz in the permanent densification region , 1981 .

[42]  L. Chhabildas Shock Loading and Release Behavior of X-Cut Quartz , 1986 .

[43]  G. Lyzenga,et al.  The temperature of shock‐compressed water , 1982 .

[44]  Y. Gupta,et al.  Quasistatic experiments to determine material constants for the piezoresistance foils used in shock wave experiments , 1984 .

[45]  G. E. Duvall,et al.  Phase transitions under shock-wave loading , 1977 .

[46]  J. Asay,et al.  Shock‐compression and release behavior near melt states in aluminum , 1975 .

[47]  W. Holle SHOCK WAVE DIAGNOSTICS BY TIME-RESOLVED INFRARED RADIOMETRY AND NON-LINEAR RAMAN SPECTROSCOPY**Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under contract No. W-7405-ENG-48. , 1984 .

[48]  J. N. Fritz,et al.  CHAPTER VII – THE EQUATION OF STATE OF SOLIDS FROM SHOCK WAVE STUDIES , 1970 .

[49]  David R. Goosman,et al.  Fabry-Perot Velocimetry Techniques: Is Doppler Shift Affected By Surface Normal Direction? , 1984, Optics & Photonics.

[50]  D. D. Keough PROCEDURE FOR FABRICATION AND OPERATION OF MANGANIN SHOCK PRESSURE GAGES. , 1968 .

[51]  Thomas J. Ahrens,et al.  Shock temperatures in CaO , 1984 .

[52]  D. E. Grady,et al.  Hugoniot sound velocities and phase transformations in two silicates , 1975 .

[53]  J. Wise,et al.  Laser interferometer measurements of refractive index in shock-compressed materials , 1986 .

[54]  K. Kondo,et al.  Method for the measurement of temperature in shock compression of solids , 1980 .

[55]  Satish C. Gupta,et al.  Piezoresistance response of longitudinally and laterally oriented ytterbium foils subjected to impact and quasi‐static loading , 1985 .

[56]  M. Durand,et al.  Interferometric laser technique for accurate velocity measurement in shock wave physics , 1977 .

[57]  F. Bauer,et al.  Behavior of ferroelectric ceramics and PVF2 polymers under shock loading , 1982 .

[58]  Serge Gidon,et al.  Doppler Laser Interferometry With Light Transmission By Two Optical Fibers , 1985, Other Conferences.

[59]  The pressure dependence of the yield strength of shock‐loaded Manganin gauges , 1985 .

[60]  Lalit C. Chhabildas,et al.  Rise‐time measurements of shock transitions in aluminum, copper, and steel , 1979 .

[61]  L. M. Erickson,et al.  Precision stress measurements in severe shock‐wave environments with low‐impedance manganin gauges , 1980 .

[62]  L. V. Al’tshuler,et al.  Strength and elasticity of iron and copper at high shock-wave compression pressures , 1971 .

[63]  D. Grady,et al.  Effects of Stress on the Electrical Resistance of Ytterbium and Calibration of Ytterbium Stress Transducers , 1973 .

[64]  J. M. Brown,et al.  Melting of iron under core conditions , 1980 .

[65]  Herbert J. Sutherland,et al.  A velocity interferometer technique to determine shear‐wave particle velocity in shock‐loaded solids , 1979 .

[66]  Possibility of measuring shear waves in oblique‐impact experiments with in‐material piezoresistance gauges , 1986 .

[67]  D. D. Keough,et al.  Experimental facility to produce and measure compression and shear waves in impacted solids , 1980 .

[68]  D. D. Keough,et al.  Variation of the Shock Piezoresistance Coefficient of Manganin as a Function of Deformation , 1970 .

[69]  T. Mashimo,et al.  A Measurement System for Interior Projectile Motion and Particle-Velocity Histories for Impact Shock Study with a Two-Stage Light Gas Gun , 1981 .

[70]  Longitudinal dynamic stress measurements with in-material piezoresistive gauges , 1985 .

[71]  W. F. Hemsing,et al.  Velocity sensing interferometer (VISAR) modification. , 1979, The Review of scientific instruments.

[72]  D. Grady,et al.  Piezoresistive effects in ytterbium stress transducers , 1977 .

[73]  Pei Chi Chou,et al.  Dynamic Response of Materials to Intense Impulsive Loading , 1972 .

[74]  Gregory A. Lyzenga,et al.  Shock temperatures of SiO2 and their geophysical implications , 1983 .

[75]  D. Erlich,et al.  Stress-gage system for the megabar (100 GPa) range. Final report 13 Aug 1974--Mar 1976 , 1976 .

[76]  L. M. Barker,et al.  Correction to the velocity‐per‐fringe relationship for the VISAR interferometer , 1974 .

[77]  J. N. Fritz,et al.  Optical technique for determining rarefaction wave velocities at very high pressures , 1982 .

[78]  C. Young,et al.  An electromagnetic shear-stress gage for large-amplitude shear waves , 1977 .

[79]  James R. Asay,et al.  The response of materials to dynamic loading , 1987 .

[80]  H. H. Chau,et al.  Streak camera recording of interferometer fringes , 1977 .

[81]  Z. Rosenberg,et al.  Determination of stress-time histories in axially symmetric impacts with the two-gauge technique , 1984 .

[82]  E. Barsis,et al.  Piezoresistivity Coefficients in Manganin , 1970 .

[83]  Calibration studies of the carbon piezoresistive gauge , 1975 .

[84]  L. M. Barker,et al.  Laser interferometer for measuring high velocities of any reflecting surface , 1972 .

[85]  R. Graham Shock-induced electrical activity in polymeric solids. A mechanically induced bond scission model , 1979 .