SPECTRA – a Maple library for solving linear matrix inequalities in exact arithmetic

This document describes our freely distributed Maple library spectra, for Semidefinite Programming solved Exactly with Computational Tools of Real Algebra. It solves linear matrix inequalities with symbolic computation in exact arithmetic and it is targeted to small-size, possibly degenerate problems for which symbolic infeasibility or feasibility certificates are required.

[1]  Rekha R. Thomas,et al.  Semidefinite Optimization and Convex Algebraic Geometry , 2012 .

[2]  Pablo A. Parrilo,et al.  Computing sum of squares decompositions with rational coefficients , 2008 .

[3]  S. Pearson Moments , 2020, Narrative inquiry in bioethics.

[4]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[5]  Simone Naldi,et al.  Exact algorithms for determinantal varieties and semidefinite programming. (Algorithmes exacts pour les variétés déterminantielles et la programmation semi-définie) , 2015 .

[6]  Cynthia Vinzant,et al.  What is... a spectrahedron , 2014 .

[7]  Makoto Yamashita,et al.  Latest Developments in the SDPA Family for Solving Large-Scale SDPs , 2012 .

[8]  Lynn Chua,et al.  Gram Spectrahedra. , 2016, 1608.00234.

[9]  Claus Scheiderer,et al.  Sums of squares of polynomials with rational coefficients , 2012, 1209.2976.

[10]  Igor Klep,et al.  Sums of Hermitian Squares and the BMV Conjecture , 2008 .

[11]  Bin Li,et al.  Exact certification in global polynomial optimization via sums-of-squares of rational functions with rational coefficients , 2012, J. Symb. Comput..

[12]  Igor Klep,et al.  Rational sums of hermitian squares of free noncommutative polynomials , 2015, Ars Math. Contemp..

[13]  Jean-Charles Faugère,et al.  FGb: A Library for Computing Gröbner Bases , 2010, ICMS.

[14]  Bernd Sturmfels,et al.  The algebraic degree of semidefinite programming , 2010, Math. Program..

[15]  Anton van den Hengel,et al.  Semidefinite Programming , 2014, Computer Vision, A Reference Guide.

[16]  J. Lasserre Moments, Positive Polynomials And Their Applications , 2009 .

[17]  Victor Magron,et al.  Certified Lower Bounds of Roundoff Errors using Semidefinite Programming , 2016, ArXiv.

[18]  A. J. Goldman,et al.  Some geometric results in semidefinite programming , 1995, J. Glob. Optim..

[19]  Monique Laurent,et al.  Semidefinite optimization , 2019, Graphs and Geometry.

[20]  Brian Borchers,et al.  SDPLIB 1.1, A Library of Semidefinite Programming Test Problems , 1998 .

[21]  Richard P. Brent,et al.  Error bounds on complex floating-point multiplication , 2007, Math. Comput..

[22]  Maho Nakata,et al.  A numerical evaluation of highly accurate multiple-precision arithmetic version of semidefinite programming solver: SDPA-GMP, -QD and -DD. , 2010, 2010 IEEE International Symposium on Computer-Aided Control System Design.

[23]  Mohab Safey El Din,et al.  Exact algorithms for linear matrix inequalities , 2015, SIAM J. Optim..