Computing with certainty individual members of families of periodic orbits of a given period
暂无分享,去创建一个
Michael N. Vrahatis | M. N. Vrahatis | A. E. Perdiou | E. A. Perdios | V. S. Kalantonis | V. Kalantonis | E. Perdios | A. Perdiou
[1] Baker Kearfott,et al. An efficient degree-computation method for a generalized method of bisection , 1979 .
[2] Drossos,et al. Method for computing long periodic orbits of dynamical systems. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[3] James M. Ortega,et al. Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.
[4] William H. Press,et al. The Art of Scientific Computing Second Edition , 1998 .
[5] Kris Sikorski,et al. A bisection method for systems of nonlinear equations , 1984, TOMS.
[6] J. Wiersig,et al. Elliptic Quantum Billiard , 1996, chao-dyn/9612020.
[7] K. Sikorski. Bisection is optimal , 1982 .
[8] A. Mcdonald,et al. The restricted 3-body problem with radiation pressure , 1985 .
[9] O. Ragos,et al. Periodic solutions around the collinear langrangian points in the photo gravitational restricted three-body problem: Sun-Jupiter case , 1990 .
[10] Arnold Neumaier,et al. Introduction to Numerical Analysis , 2001 .
[11] V. V. Markellos. On the stability parameters of periodic solutions , 1976 .
[12] N. Buric,et al. MODULAR SMOOTHING OF ACTION , 1998 .
[13] A. Elipe. On the restricted three-body problem with generalized forces , 1992 .
[14] Michael N. Vrahatis,et al. Algorithm 666: Chabis: a mathematical software package for locating and evaluating roots of systems of nonlinear equations , 1988, TOMS.
[15] F. Whipple,et al. The Poynting-Robertson effect on meteor orbits , 1950 .
[16] Wladyslaw Kulpa,et al. THE POINCARE-MIRANDA THEOREM , 1997 .
[17] Michael N. Vrahatis,et al. Locating and Computing All the Simple Roots and Extrema of a Function , 1996, SIAM J. Sci. Comput..
[18] John E. Dennis,et al. Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.
[19] ITERATIVE SOLUTION OF NONLINEAR EQUATIONS OF HAMMERSTEIN TYPE , 2003 .
[20] J. E. Glynn,et al. Numerical Recipes: The Art of Scientific Computing , 1989 .
[21] J. Stoer,et al. Introduction to Numerical Analysis , 2002 .
[22] M N Vrahatis,et al. A rapid Generalized Method of Bisection for solving Systems of Non-linear Equations , 1986 .
[23] Michael N. Vrahatis,et al. Solving systems of nonlinear equations using the nonzero value of the topological degree , 1988, TOMS.
[24] K. E. Papadakis,et al. The stability of inner collinear equilibrium points in the photogravitational elliptic restricted problem , 1993 .
[25] Michael N. Vrahatis,et al. An efficient method for locating and computing periodic orbits of nonlinear mappings , 1995 .
[26] John M. Greene,et al. A method for determining a stochastic transition , 1979, Hamiltonian Dynamical Systems.
[27] John M. Greene,et al. Locating three-dimensional roots by a bisection method , 1992 .