Computation of Smooth Manifolds Via Rigorous Multi-parameter Continuation in Infinite Dimensions

In this paper, we introduce a constructive rigorous numerical method to compute smooth manifolds implicitly defined by infinite-dimensional nonlinear operators. We compute a simplicial triangulation of the manifold using a multi-parameter continuation method on a finite-dimensional projection. The triangulation is then used to construct local charts and an atlas of the manifold in the infinite-dimensional domain of the operator. The idea behind the construction of the smooth charts is to use the radii polynomial approach to verify the hypotheses of the uniform contraction principle over a simplex. The construction of the manifold is globalized by proving smoothness along the edge of adjacent simplices. We apply the method to compute portions of a two-dimensional manifold of equilibria of the Cahn–Hilliard equation.

[1]  J. Lessard Recent advances about the uniqueness of the slowly oscillating periodic solutions of Wright's equation , 2009, 0909.4107.

[2]  W. Rheinboldt On the computation of multi-dimensional solution manifolds of parametrized equations , 1988 .

[3]  Konstantin Mischaikow,et al.  Global smooth solution curves using rigorous branch following , 2010, Math. Comput..

[4]  Jean-Philippe Lessard,et al.  Efficient Rigorous Numerics for Higher-Dimensional PDEs via One-Dimensional Estimates , 2013, SIAM J. Numer. Anal..

[5]  Wolf-Jürgen Beyn,et al.  Stability and Multiplicity of Solutions to Discretizations of Nonlinear Ordinary Differential Equations , 1981 .

[6]  Werner C. Rheinboldt,et al.  On the Computation of Simplical Approximations of Implicitly Defined Two-Dimensional Manifolds. , 1994 .

[7]  E. Allgower,et al.  Simplicial and Continuation Methods for Approximating Fixed Points and Solutions to Systems of Equations , 1980 .

[8]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[9]  Siegfried M. Rump,et al.  INTLAB - INTerval LABoratory , 1998, SCAN.

[10]  Michael E. Henderson,et al.  Multiple Parameter Continuation: Computing Implicitly Defined k-Manifolds , 2002, Int. J. Bifurc. Chaos.

[11]  Konstantin Mischaikow,et al.  Rigorous Numerics for the Cahn-Hilliard Equation on the Unit Square , 2008 .

[12]  Konstantin Mischaikow,et al.  Validated continuation over large parameter ranges for equilibria of PDEs , 2008, Math. Comput. Simul..

[13]  Konstantin Mischaikow,et al.  Rigorous Numerics for Global Dynamics: A Study of the Swift-Hohenberg Equation , 2005, SIAM J. Appl. Dyn. Syst..

[14]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[15]  Richard Courant,et al.  Wiley Classics Library , 2011 .

[16]  J. Hale,et al.  Methods of Bifurcation Theory , 1996 .

[17]  R. Jiménez,et al.  A decreasing sequence of upper bounds for the Perron root , 1994 .

[18]  D. S. Mackey,et al.  A new algorithm for two-dimensional numerical continuation , 1995 .

[19]  Jean-Philippe Lessard,et al.  Global Bifurcation Diagrams of Steady States of Systems of PDEs via Rigorous Numerics: a 3-Component Reaction-Diffusion System , 2013 .

[20]  Konstantin Mischaikow,et al.  Rigorous Numerics for Symmetric Connecting Orbits: Even Homoclinics of the Gray-Scott Equation , 2011, SIAM J. Math. Anal..

[21]  M. Plum Existence and enclosure results for continua of solutions of parameter-dependent nonlinear boundary value problems , 1995 .

[22]  Luca Dieci,et al.  Path Following by SVD , 2006, International Conference on Computational Science.

[23]  Jean-Philippe Lessard,et al.  Analytic estimates and rigorous continuation for equilibria of higher-dimensional PDEs , 2010 .