Quasiconvex analysis of backtracking algorithms

We consider a class of multivariate recurrences frequently arising in the worst case analysis of Davis-Putnam-style exponential time backtracking algorithms for NP-hard problems. We describe a technique for proving asymptotic upper bounds on these recurrences, by using a suitable weight function to reduce the problem to that of solving univariate linear recurrences; show how to use quasiconvex programming to determine the weight function yielding the smallest upper bound; and prove that the resulting upper bounds are within a polynomial factor of the true asymptotics of the recurrence. We develop and implement a multiple-gradient descent algorithm for the resulting quasiconvex programs, using a real-number arithmetic package for guaranteed accuracy of the computed worst case time bounds.

[1]  Uwe Schöning A Probabilistic Algorithm for k-SAT and Constraint Satisfaction Problems , 1999, FOCS.

[2]  David Eppstein,et al.  Optimal Möbius Transformations for Information Visualization and Meshing , 2001, WADS.

[3]  Richard Beigel,et al.  Finding maximum independent sets in sparse and general graphs , 1999, SODA '99.

[4]  Jesper Makholm Byskov Algorithms for k-colouring and finding maximal independent sets , 2003, SODA '03.

[5]  David Eppstein Small Maximal Independent Sets and Faster Exact Graph Coloring , 2001, WADS.

[6]  Michael E. Saks,et al.  An improved exponential-time algorithm for k-SAT , 2005, JACM.

[7]  B. Gartner A subexponential algorithm for abstract optimization problems , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[8]  David Eppstein,et al.  Journal of Graph Algorithms and Applications Confluent Drawings: Visualizing Non-planar Diagrams in a Planar Way , 2022 .

[9]  David Eppstein,et al.  Optimized color gamuts for tiled displays , 2002, SCG '03.

[10]  Bernd Gärtner A Subexponential Algorithm for Abstract Optimization Problems , 1992, FOCS.

[11]  Micha Sharir,et al.  A subexponential bound for linear programming , 1992, SCG '92.

[12]  David Eppstein,et al.  The Traveling Salesman Problem for Cubic Graphs , 2003, J. Graph Algorithms Appl..

[13]  David Eppstein,et al.  Optimal point placement for mesh smoothing , 1997, SODA '97.

[14]  Nina Amenta,et al.  Helly-type theorems and Generalized Linear Programming , 1994, Discret. Comput. Geom..

[15]  Evgeny Dantsin,et al.  Algorithms for k-SAT based on covering codes , 2000 .

[16]  John Michael Robson,et al.  Algorithms for Maximum Independent Sets , 1986, J. Algorithms.

[17]  PaturiRamamohan,et al.  An improved exponential-time algorithm for k-SAT , 2005 .