Well-posed Bayesian inverse problems and heavy-tailed stable quasi-Banach space priors

This article extends the framework of Bayesian inverse problems in infinite-dimensional parameter spaces, as advocated by Stuart ( Acta Numer. 19:451–559,2010) and others, to the case of a heavy-tailed prior measure in the family of stable distributions, such as an infinite-dimensional Cauchy distribution, for which polynomial moments are infinite or undefined. It is shown that analogues of the Karhunen–Loeve expansion for square-integrable random variables can be used to sample such measures on quasi-Banach spaces. Furthermore, under weaker regularity assumptions than those used to date, the Bayesian posterior measure is shown to depend Lipschitz continuously in the Hellinger metric upon perturbations of the misfit function and observed data.

[1]  C. L. Nikias,et al.  Signal processing with fractional lower order moments: stable processes and their applications , 1993, Proc. IEEE.

[2]  Andrew M. Stuart,et al.  Inverse problems: A Bayesian perspective , 2010, Acta Numerica.

[3]  M. Talagrand,et al.  Probability in Banach Spaces: Isoperimetry and Processes , 1991 .

[4]  C. Kraft Some conditions for consistency and uniform consistency of statistical procedures , 1955 .

[5]  Matti Lassas. Eero Saksman,et al.  Discretization-invariant Bayesian inversion and Besov space priors , 2009, 0901.4220.

[6]  A. Stuart,et al.  Besov priors for Bayesian inverse problems , 2011, 1105.0889.

[7]  E. Tsionas Monte Carlo inference in econometric models with symmetric stable disturbances , 1999 .

[8]  A. Aldroubi,et al.  p-Frames and Shift Invariant Subspaces of Lp , 2001 .

[9]  Lassi Roininen,et al.  Cauchy difference priors for edge-preserving Bayesian inversion , 2016, Journal of Inverse and Ill-posed Problems.

[10]  Chrysostomos L. Nikias,et al.  Scalar quantisation of heavy-tailed signals , 2000 .

[11]  Amiel Feinstein,et al.  Information and information stability of random variables and processes , 1964 .

[12]  SOME PROPERTIES OF HILBERT SCALES , 1967 .

[13]  C. Mallows,et al.  A Method for Simulating Stable Random Variables , 1976 .

[14]  Faming Liang,et al.  Statistical and Computational Inverse Problems , 2006, Technometrics.

[15]  Ton Steerneman,et al.  ON THE TOTAL VARIATION AND HELLINGER DISTANCE BETWEEN SIGNED MEASURES - AN APPLICATION TO PRODUCT MEASURES , 1983 .

[16]  Houman Owhadi,et al.  Qualitative Robustness in Bayesian Inference , 2014, 1411.3984.

[17]  S. Siltanen,et al.  Can one use total variation prior for edge-preserving Bayesian inversion? , 2004 .

[18]  Bamdad Hosseini,et al.  Well-Posed Bayesian Inverse Problems: Priors with Exponential Tails , 2016, SIAM/ASA J. Uncertain. Quantification.

[19]  Ole Christensen,et al.  p-Frames in Separable Banach Spaces , 2003, Adv. Comput. Math..

[20]  Alin Achim,et al.  SAR image denoising via Bayesian wavelet shrinkage based on heavy-tailed modeling , 2003, IEEE Trans. Geosci. Remote. Sens..

[21]  Anne Auger,et al.  When Do Heavy-Tail Distributions Help? , 2006, PPSN.

[22]  Kim C. Border,et al.  Infinite Dimensional Analysis: A Hitchhiker’s Guide , 1994 .

[23]  Vladimir I. Bogachev,et al.  Differentiable measures and the Malliavin calculus , 2010 .

[24]  A. Stuart,et al.  The Bayesian Approach to Inverse Problems , 2013, 1302.6989.

[25]  J. L. Nolan Stable Distributions. Models for Heavy Tailed Data , 2001 .

[26]  E. Somersalo,et al.  Statistical and computational inverse problems , 2004 .