Structure solution and refinement of stacking-faulted NiCl(OH)
暂无分享,去创建一个
[1] R. Dinnebier,et al. A solid solution series of atacamite type Ni2xMg2−2xCl(OH)3 , 2015 .
[2] D. Rafaja,et al. Stacking fault energy in austenitic steels determined by using in situ X-ray diffraction during bending , 2014 .
[3] R. Dinnebier,et al. Ni3Cl2.1(OH)3.9·4H2O, the Ni analogue to Mg3Cl2(OH)4·4H2O. , 2014, Inorganic chemistry.
[4] V. Klemm,et al. In situ X-ray diffraction study of stacking fault formation in the near-surface region of transformation induced plasticity steels , 2013 .
[5] J. Howe,et al. Enhanced photocatalytic activity of TiO_2–niobate nanosheet composites , 2013 .
[6] R. Dohrmann,et al. Rietveld Refinement of Disordered Illite-Smectite Mixed-Layer Structures by a Recursive Algorithm. II: Powder-Pattern Refinement and Quantitative Phase Analysis , 2012, Clays and Clay Minerals.
[7] Xiaodong Wang,et al. Quantitative X-ray diffraction phase analysis of poorly ordered nontronite clay in nickel laterites , 2011 .
[8] J. Hanson,et al. The Crystal Structures of two Anhydrous Magnesium Hydroxychloride Phases from in situ Synchrotron Powder Diffraction Data , 2011 .
[9] D. Šimek,et al. Stacking fault model of ∊-martensite and its DIFFaX implementation , 2011 .
[10] I. Natkaniec,et al. Atomic structure and lattice dynamics of Ni and Mg hydroxides , 2010 .
[11] E. .. Mittemeijer,et al. Layer-stacking irregularities in C36-type Nb–Cr and Ti–Cr Laves phases and their relation with polytypic phase transformations , 2010 .
[12] G. Roth,et al. Description of X-ray powder pattern of turbostratically disordered layer structures with a Rietveld compatible approach , 2004 .
[13] M. Leoni,et al. Simultaneous refinement of structure and microstructure of layered materials , 2004 .
[14] P. C. Kundu. Aluminon as metal indicator in complexometric titration , 2004, Naturwissenschaften.
[15] E. D. Oliveira,et al. Infrared study of magnesium–nickel hydroxide solid solutions , 2003 .
[16] Alan A. Coelho,et al. Indexing of powder diffraction patterns by iterative use of singular value decomposition , 2002 .
[17] A. Coelho. Whole-profile structure solution from powder diffraction data using simulated annealing , 2000 .
[18] P. Haumesser,et al. The Structure of Ni ( OH ) 2: From the Ideal Material to the Electrochemically Active One , 1999 .
[19] H. Lutz,et al. Lattice vibration spectra. Part LXXXII. Brucite-type hydroxides M(OH)2 (M = Ca, Mn, Co, Fe, Cd) — IR and Raman spectra, neutron diffraction of Fe(OH)2 , 1994 .
[20] H. Lutz,et al. Lattice vibration spectra Part LXXII. OH stretching frequencies of solid hydroxides — correlation with structural and bonding data , 1992 .
[21] Armel Le Bail,et al. Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction , 1988 .
[22] H. Lutz,et al. A new interpretation of the frequency shiftings of the OH stretching modes in solid hydroxides , 1987 .
[23] J. Ibers,et al. Diffraction and Spectroscopic Studies of the Cobaltic Acid System HCoC2–DCoO2 , 1969 .
[24] H. Oswald,et al. Über die Hydroxidhalogenide Me2(OH)3Cl, ‐Br, ‐J zweiwertiger Metalle (Me = Mg, Ni, Co, Cu, Fe, Mn) , 1964 .
[25] A. Braibanti,et al. Refinement of the crystal structure of NiCl2 and of unit-cell parameters of some anhydrous chlorides of divalent metals , 1963 .
[26] H. Oswald,et al. Die Kristallstruktur von CuOHCl , 1961 .
[27] H. Oswald,et al. Über die Hydroxidchloride Me(OH)Cl. (Me = Mg, Ni, Co, Cu, Zn, Fe, Mn, Cd, Ca, Sn) , 1961 .
[28] A. Magnéli,et al. On the Crystal Structure of beta-ZnOHCl. , 1959 .
[29] G. Wehner. Über die basischen Chloride des Magnesiums , 1953 .
[30] W. Feitknecht,et al. Zur Chemie und Morphologie der basischen Salze zweiwertiger Metalle VII. Über basische Nickelchloride experimentell bearbeitet , 1939 .