On Test Sets and the Ehrenfeucht Conjecture

Ehrenfeucht conjectured that each language over a finite alphabet σ possesses a test set, that is a finite subset F of L such that any two morphisms on σ* agreeing on each string of F also agree on each string of L. We give a sufficient condition for a language L to guarantee that it has a test set. We also show that the Ehrenfeucht conjecture holds true if and only if every (infinite) system of equations (with finite number of variables) over a finitely generated free, monoid has an equivalent finite subsystem. The equivalence and the inclusion problems for finite systems of equations are shown to be decidable. As an application we derive a result that for DOL languages the existence of a test set implies its effective existence. Consequently, the validity of the Ehrenfeucht conjecture for DOL languages implies the decidability of the HDOL sequence equivalence problem. Finally, we show that the Ehrenfeucht conjecture holds true for so-called positive DOL languages.

[1]  Arto Salomaa,et al.  Test Sets and Checking Words for Homomorphism Equivalence , 1980, J. Comput. Syst. Sci..

[2]  Andrzej Ehrenfeucht,et al.  Simplifications of Homomorphisms , 1978, Inf. Control..

[3]  Karel Culik,et al.  On the Ehrenfeucht Conjecture for DOL Languages , 1983, RAIRO Theor. Informatics Appl..

[4]  Ronald V. Book,et al.  Formal language theory : perspectives and open problems , 1980 .

[5]  Karel Culik,et al.  HOMOMORPHISMS: DECIDABILITY, EQUALITY AND TEST SETS , 1980 .

[6]  G. Makanin The Problem of Solvability of Equations in a Free Semigroup , 1977 .

[7]  M. Schützenberger,et al.  Rational sets in commutative monoids , 1969 .

[8]  Karel Culik,et al.  Test Sets for Context Free Languages and Algebraic Systems of Equations over a Free Monoid , 1982, Inf. Control..

[9]  Andrzej Ehrenfeucht,et al.  On Binary Equality Sets and a Solution to the Ehrenfeucht Conjecture in the Binary Case ; CU-CS-221-82 , 1983 .

[10]  Arto Salomaa,et al.  On the Decidability of Homomorphism Equivalence for Languages , 1978, J. Comput. Syst. Sci..

[11]  Karel Culik,et al.  On the Equality Sets for Homomorphisms on Free Monoids with Two Generators , 1980, RAIRO Theor. Informatics Appl..

[12]  Jean Berstel,et al.  Transductions and context-free languages , 1979, Teubner Studienbücher : Informatik.

[13]  Dominique Perrin Combinatorics on words , 1981 .

[14]  Michael A. Harrison,et al.  Introduction to formal language theory , 1978 .

[15]  Grzegorz Rozenberg,et al.  The mathematical theory of L systems , 1980 .

[16]  J. Berstel,et al.  Sur le théorème du défaut , 1979 .