Highly active nanoreactors: nanomaterial encapsulation based on confined catalysis.

It happens inside: highly active nanoreactors are prepared by encapsulating dendritic Pt nanoparticles (NPs) grown on a polystyrene template inside hollow porous silica capsules. The catalytic activity of these Pt NPs is preserved after encapsulation and template removal. Different metals, such as Ni, can thus be reduced inside the capsules, thereby leading to the formation of composites with tunable magnetic properties.

[1]  In Su Lee,et al.  Hollow manganese oxide nanoparticles as multifunctional agents for magnetic resonance imaging and drug delivery. , 2009, Angewandte Chemie.

[2]  Wolfgang J Parak,et al.  LbL multilayer capsules: recent progress and future outlook for their use in life sciences. , 2010, Nanoscale.

[3]  Yadong Yin,et al.  Highly tunable superparamagnetic colloidal photonic crystals. , 2007, Angewandte Chemie.

[4]  Mircea Dincă,et al.  Hydrogen storage in metal-organic frameworks. , 2009, Chemical Society reviews.

[5]  Mostafa A. El-Sayed,et al.  Shape-Dependent Catalytic Activity of Platinum Nanoparticles in Colloidal Solution , 2004 .

[6]  W. Krantz,et al.  Formation and Characterization of Polyamide Membranes via Interfacial Polymerization , 1994 .

[7]  L. Liz‐Marzán,et al.  Magnificent sea-anemone-like magnetic silica capsules reinforced with carbon nanotubes. , 2008, Small.

[8]  T. Freund Kinetics of the reduction of inorganic ions by borohydride—I ferricyanide , 1959 .

[9]  S. Kitagawa,et al.  Selective sorption of oxygen and nitric oxide by an electron-donating flexible porous coordination polymer , 2010, Nature Chemistry.

[10]  Qiang He,et al.  Controlled Preparation of MnO2 Hierarchical Hollow Nanostructures and Their Application in Water Treatment , 2008 .

[11]  Younan Xia,et al.  Polyol synthesis of platinum nanostructures: control of morphology through the manipulation of reduction kinetics. , 2005, Angewandte Chemie.

[12]  Yufang Zhu,et al.  Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure. , 2005, Angewandte Chemie.

[13]  Kasper Renggli,et al.  Selective and Responsive Nanoreactors , 2011 .

[14]  Christina Graf,et al.  A General Method To Coat Colloidal Particles with Silica , 2003 .

[15]  Fei Liu,et al.  Recent developments in the chemical synthesis of inorganic porous capsules , 2009 .

[16]  Jung Ho Yu,et al.  Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals. , 2006, Journal of the American Chemical Society.

[17]  Taeghwan Hyeon,et al.  Ni/NiO core/shell nanoparticles for selective binding and magnetic separation of histidine-tagged proteins. , 2006, Journal of the American Chemical Society.

[18]  G. Sukhorukov,et al.  Micron-scale hollow polyelectrolyte capsules with nanosized magnetic Fe3O4 inside , 2003 .

[19]  Helmuth Möhwald,et al.  Novel Hollow Polymer Shells by Colloid-Templated Assembly of Polyelectrolytes. , 1998, Angewandte Chemie.

[20]  M. Casanove,et al.  Synthesis and Magnetic Properties of Nickel Nanorods , 2001 .

[21]  Jing Wei,et al.  Multifunctional mesoporous composite microspheres with well-designed nanostructure: a highly integrated catalyst system. , 2010, Journal of the American Chemical Society.

[22]  T. C. Green,et al.  Shape-Controlled Synthesis of Colloidal Platinum Nanoparticles , 1996, Science.

[23]  G. Sukhorukov,et al.  Real-time assessment of spatial and temporal coupled catalysis within polyelectrolyte microcapsules containing coimmobilized glucose oxidase and peroxidase. , 2006, Biomacromolecules.

[24]  Nikolai Gaponik,et al.  Leuchtdioden mit Halbleiternanokristallen , 2008 .

[25]  Luis M Liz-Marzán,et al.  Design of SERS-encoded, submicron, hollow particles through confined growth of encapsulated metal nanoparticles. , 2009, Journal of the American Chemical Society.

[26]  L. Liz‐Marzán,et al.  Tailoring the magnetic properties of nickel nanoshells through controlled chemical growth , 2010 .

[27]  Katsuhiko Ariga,et al.  Open-mouthed metallic microcapsules: exploring performance improvements at agglomeration-free interiors. , 2010, Journal of the American Chemical Society.

[28]  Avelino Corma,et al.  Monodispersed mesoporous silica nanoparticles with very large pores for enhanced adsorption and release of DNA. , 2009, The journal of physical chemistry. B.

[29]  A. Corma,et al.  Engineering metal organic frameworks for heterogeneous catalysis. , 2010, Chemical reviews.

[30]  Zhong Lin Wang,et al.  A new catalytically active colloidal platinum nanocatalyst: the multiarmed nanostar single crystal. , 2008, Journal of the American Chemical Society.

[31]  M. Correa‐Duarte,et al.  Increasing the Complexity of Magnetic Core/Shell Structured Nanocomposites for Biological Applications , 2007 .

[32]  T. Hyeon,et al.  Monodisperse Nanoparticles of Ni and NiO: Synthesis, Characterization, Self‐Assembled Superlattices, and Catalytic Applications in the Suzuki Coupling Reaction , 2005 .

[33]  Gleb B. Sukhorukov,et al.  NEUARTIGE POLYMERHOHLKORPER DURCH SELBSTORGANISATION VON POLYELEKTROLYTEN AUF KOLLOIDALEN TEMPLATEN , 1998 .

[34]  Qian Wang,et al.  Self-assembly and cross-linking of bionanoparticles at liquid-liquid interfaces. , 2005, Angewandte Chemie.

[35]  M. Roeffaers,et al.  Interfacial synthesis of hollow metal–organic framework capsules demonstrating selective permeability , 2011, Nature Chemistry.

[36]  Luis M Liz-Marzán,et al.  Pt-catalyzed formation of Ni nanoshells on carbon nanotubes. , 2007, Angewandte Chemie.

[37]  A M Minor,et al.  Ultrahigh stress and strain in hierarchically structured hollow nanoparticles. , 2008, Nature materials.

[38]  Caruso,et al.  Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating , 1998, Science.

[39]  S. Mørup,et al.  Spin-glass-like ordering of the magnetic moments of interacting nanosized maghemite particles. , 1995, Physical review. B, Condensed matter.

[40]  A. Corma,et al.  Different Routes for Preparing Mesoporous Organosilicas Containing the Tröger’s Base and Their Textural and Catalytic Implications , 2011 .

[41]  L. Liz‐Marzán,et al.  Highly Catalytic Single-Crystal Dendritic Pt Nanostructures Supported on Carbon Nanotubes , 2009 .

[42]  H. Möhwald,et al.  Entrapment of alpha-chymotrypsin into hollow polyelectrolyte microcapsules. , 2001 .

[43]  Tim Liedl,et al.  Nanoengineered polymer capsules: tools for detection, controlled delivery, and site-specific manipulation. , 2005, Small.