A polynomial solution for the potato-peeling problem

The potato-peeling problem asks for the largest convex polygon contained inside a given simple polygon. We give anO(n7) time algorithm to this problem, answering a question of Goodman. We also give anO(n6) time algorithm if the desired polygon is maximized with respect to perimeter.

[1]  Dov Dori,et al.  Circumscribing a convex polygon by a polygon of fewer sides with minimal area addition , 1983, Comput. Vis. Graph. Image Process..

[2]  Bernard Chazelle,et al.  Computing the Largest Empty Rectangle , 1984, SIAM J. Comput..

[3]  David P. Dobkin,et al.  On a general method for maximizing and minimizing among certain geometric problems , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[4]  Leonidas J. Guibas,et al.  Finding extremal polygons , 1982, STOC '82.

[5]  Chee-Keng Yap,et al.  Algebraic cell decomposition in NC , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[6]  Jacob E. Goodman,et al.  On the largest convex polygon contained in a non-convex n-gon, or how to peel a potato , 1981 .

[7]  G. D. Chakerian,et al.  Geometric Extremum Problems , 1971 .

[8]  Godfried T. Toussaint,et al.  PATTERN RECOGNITION AND GEOMETRICAL COMPLEXITY. , 1980 .

[9]  John H. Reif,et al.  The complexity of elementary algebra and geometry , 1984, STOC '84.

[10]  Micha Sharir,et al.  On shortest paths in polyhedral spaces , 1986, STOC '84.

[11]  Derick Wood,et al.  Computing a convex skill of an orthogonal polygon , 1985, SCG '85.

[12]  Chee-Keng Yap,et al.  A Polynomial Solution for Potato-peeling and other Polygon Inclusion and Enclosure Problems , 1984, FOCS.

[13]  Joseph O'Rourke Counterexamples to a minimal circumscription algorithm , 1985, Comput. Vis. Graph. Image Process..

[14]  Alok Aggarwal,et al.  An Optimal Algorithm for Finding Minimal Enclosing Triangles , 1986, J. Algorithms.

[15]  Victor Klee,et al.  Finding the Smallest Triangles Containing a Given Convex Polygon , 1985, J. Algorithms.