Coherent Doppler Lidar Measurements of Wind Field Statistics

Coherent Doppler lidar measurements of wind statistics in the boundary layer are presented. The effects of the spatial averaging by the lidar pulse are removed using theoretical corrections and computer simulations. This permits unbiased estimates of velocity variance, spatial velocity structure functions, energy dissipation rate, and other point statistics of the velocity field.

[1]  A. S. Monin,et al.  Statistical Fluid Mechanics: The Mechanics of Turbulence , 1998 .

[2]  J. Kaimal,et al.  Spectral Characteristics of Surface-Layer Turbulence , 1972 .

[3]  J H Churnside,et al.  Speckle statistics of atmospherically backscattered laser light. , 1983, Applied optics.

[4]  Donald H. Lenschow,et al.  Applications of Dual Aircraft Formation Flights , 1988 .

[5]  R. Stull An Introduction to Boundary Layer Meteorology , 1988 .

[6]  S. Henderson,et al.  Remote wind profiling with a solid-state Nd:YAG coherent lidar system. , 1989, Optics letters.

[7]  Donald H. Lenschow,et al.  The spectral velocity tensor for homogeneous boundary-layer turbulence , 1989 .

[8]  R. E. Cupp,et al.  Doppler lidar measurement of profiles of turbulence and momentum flux , 1989 .

[9]  B. J. Rye Spectral correlation of atmospheric lidar returns with range-dependent backscatter , 1990 .

[10]  S. Henderson,et al.  Eye-safe coherent laser radar system at 2.1 microm using Tm,Ho:YAG lasers. , 1991, Optics letters.

[11]  J. B. Williams,et al.  Atmospheric Research Using Kites: Here We Go Again! , 1992 .

[12]  Mei Xu,et al.  Estimations of atmospheric boundary layer fluxes and other turbulence parameters from Doppler lidar data , 1992 .

[13]  B. J. Rye,et al.  Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I. Spectral accumulation and the Cramer-Rao lower bound , 1993, IEEE Trans. Geosci. Remote. Sens..

[14]  B. J. Rye,et al.  Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. II. Correlogram accumulation , 1993, IEEE Trans. Geosci. Remote. Sens..

[15]  Sammy W. Henderson,et al.  Coherent laser radar at 2 μm using solid-state lasers , 1993, IEEE Trans. Geosci. Remote. Sens..

[16]  R Frehlich,et al.  Coherent Doppler lidar signal covariance including wind shear and wind turbulence. , 1994, Applied optics.

[17]  R. Doviak,et al.  Remote Sensing of Vertical Velocity Variance and Surface Heat Flux in a Convective Boundary Layer , 1994 .

[18]  Rod Frehlich,et al.  Performance of Mean-Frequency Estimators for Doppler Radar and Lidar , 1994 .

[19]  Sammy W. Henderson,et al.  Performance of a 2-µm Coherent Doppler Lidar for Wind Measurements , 1994 .

[20]  R. Michael Hardesty,et al.  Spectral matched filters in coherent laser radar , 1994 .

[21]  D. Lenschow,et al.  How long is long enough when measuring fluxes and other turbulence statistics , 1994 .

[22]  C. Gardner Testing theories of atmospheric gravity wave saturation and dissipation , 1996 .

[23]  P. Seibert,et al.  Deriving characteristic parameters of the convective boundary layer from sodar measurements of the vertical velocity variance , 1996 .

[24]  Nacer K. M'Sirdi,et al.  Performance of an Adaptive Notch Filter for Spectral Analysis of Coherent Lidar Signals , 1996 .

[25]  J G Hawley,et al.  Coherent lidar airborne wind sensor II: flight-test results at 2 and 10 νm. , 1996, Applied optics.

[26]  Rod Frehlich Simulation of Coherent Doppler Lidar Performance in the Weak-Signal Regime , 1996 .

[27]  James M. Wilczak,et al.  Ground-based remote sensing of the atmospheric boundary layer: 25 years of progress , 1996 .

[28]  B. J. Rye,et al.  Detection techniques for validating Doppler estimates in heterodyne lidar. , 1997, Applied optics.

[29]  S. Henderson,et al.  Coherent Doppler lidar measurements of winds in the weak signal regime. , 1997, Applied optics.

[30]  Rod Frehlich,et al.  Effects of Wind Turbulence on Coherent Doppler Lidar Performance , 1997 .