Compartments within human primary auditory cortex: evidence from cytochrome oxidase and acetylcholinesterase staining

The human primary auditory area (AI) corresponds to granular cortex located on Heschl’s gyrus. We studied its pattern of cytochrome oxidase and acetylcholinesterase activity in 10 normal human hemispheres. In cytochrome‐oxidase‐stained coronal sections layer IV was prominent by its dark staining. The overall staining intensity varied along the medio‐lateral extent of AI; a 2.0–2.5‐mm‐wide antero‐posterior dark band was present at mid‐AI. In acetylcholinesterase‐stained coronal sections a dark antero‐posterior band appeared at the same location, corresponding to the highly granular part of AI. In cytochrome‐oxidase‐stained tangential sections of flattened AI, ≈ 500‐μm thick alternating dark and light cytochrome oxidase stripes were present in layers III and IV. These stripes were perpendicular to the dark band. Comparison with tonotopic maps of human AI obtained by activation studies suggests that the cytochrome oxidase and acetylcholinesterase dark band is most likely parallel to isofrequency lines and may correspond to the representation of frequencies critical for speech comprehension. The narrow stripes may be related to particular binaural or ampliotopic domains, whose presence is suggested by evidence from electrophysiological recordings in cat AI and from magnetoencephalographic studies in humans.

[1]  J. Kaas,et al.  Tonotopic organization, architectonic fields, and connections of auditory cortex in macaque monkeys , 1993, The Journal of comparative neurology.

[2]  F. Perrin,et al.  Tonotopic organization of the human auditory cortex: N100 topography and multiple dipole model analysis. , 1995, Electroencephalography and clinical neurophysiology.

[3]  Peter Heil,et al.  Topographic representation of tone intensity along the isofrequency axis of cat primary auditory cortex , 1994, Hearing Research.

[4]  L. Aitkin,et al.  Azimuthal sensitivity of neurons in primary auditory cortex of cats. I. Types of sensitivity and the effects of variations in stimulus parameters. , 1990, Journal of neurophysiology.

[5]  M M Merzenich,et al.  Representation of cochlea within primary auditory cortex in the cat. , 1975, Journal of neurophysiology.

[6]  R Llinás,et al.  Tonotopic organization of human auditory cortex revealed by multi-channel SQUID system. , 1992, Acta oto-laryngologica.

[7]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[8]  G. Celesia Organization of auditory cortical areas in man. , 1976, Brain : a journal of neurology.

[9]  A. Galaburda,et al.  Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. , 1993, Cerebral cortex.

[10]  R J Ilmoniemi,et al.  Tonotopic auditory cortex and the magnetoencephalographic (MEG) equivalent of the mismatch negativity. , 1993, Psychophysiology.

[11]  Peter Herscovitch,et al.  Tonotopic organization in human auditory cortex revealed by positron emission tomography , 1985, Hearing Research.

[12]  T. Elbert,et al.  Specific tonotopic organizations of different areas of the human auditory cortex revealed by simultaneous magnetic and electric recordings. , 1995, Electroencephalography and clinical neurophysiology.

[13]  S. Clarke,et al.  Modular Organization of Human Extrastriate Visual Cortex: Evidence from Cytochrome Oxidase Pattern in Normal and Macular Degeneration Cases , 1994, The European journal of neuroscience.

[14]  J. C. Middlebrooks,et al.  Binaural response-specific bands in primary auditory cortex (AI) of the cat: Topographical organization orthogonal to isofrequency contours , 1980, Brain Research.

[15]  C. Geula,et al.  Chemoarchitectonics of axonal and perikaryal acetylcholinesterase along information processing systems of the human cerebral cortex , 1994, Brain Research Bulletin.

[16]  M. Kajola,et al.  Interaural interaction in the human auditory cortex. , 1989, Audiology : official organ of the International Society of Audiology.

[17]  K. Lehnertz,et al.  Neuromagnetic evidence of an amplitopic organization of the human auditory cortex. , 1989, Electroencephalography and clinical neurophysiology.

[18]  L. Kaufman,et al.  Tonotopic organization of the human auditory cortex. , 1982, Science.

[19]  C. Economo,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen , 1925 .

[20]  J. Horton,et al.  Mapping of cytochrome oxidase patches and ocular dominance columns in human visual cortex. , 1984, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[21]  C. Geula,et al.  Cholinergic innervation of the amygdaloid complex in the human brain and its alterations in old age and Alzheimer's disease , 1993, The Journal of comparative neurology.

[22]  T. L. Hickey,et al.  Ocular dominance columns: evidence for their presence in humans , 1980, Brain Research.

[23]  A. Burkhalter,et al.  Organization of corticocortical connections in human visual cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[24]  P. Chauvel,et al.  Localization of the primary auditory area in man. , 1991, Brain : a journal of neurology.

[25]  M. Gazzaniga,et al.  Acetylcholinesterase staining in human auditory and language cortices: regional variation of structural features. , 1996, Cerebral cortex.

[26]  C. Economo,et al.  Über Windungsrelief, Maße und Rindenarchitektonik der Supratemporalfläche, ihre individuellen und ihre Seitenunterschiede , 1930 .

[27]  Jacob S. Hanker,et al.  NONDROPLET ULTRASTRUCTURAL DEMONSTRATION OF CYTOCHROME OXIDASE ACTIVITY WITH A POLYMERIZING OSMIOPHILIC REAGENT, DIAMINOBENZIDINE (DAB) , 1968, The Journal of cell biology.

[28]  M. D. M. S. P. D. J. M. Van Buren A. B.,et al.  Variations and Connections of the Human Thalamus , 1972, Springer Berlin Heidelberg.

[29]  J. Mäkelä,et al.  Different analysis of frequency and amplitude modulations of a continuous tone in the human auditory cortex: A neuromagnetic study , 1987, Hearing Research.

[30]  G. Smith,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. , 1927 .

[31]  Amblyopia induced by anisometropia without shrinkage of ocular dominance columns in human striate cortex. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[32]  T. M. Talavage,et al.  Preliminary fMRI evidence for tonotopicity in human auditory cortex , 1996, NeuroImage.

[33]  R. Reale,et al.  Tonotopic organization in auditory cortex of the cat , 1980, The Journal of comparative neurology.

[34]  C E Schreiner,et al.  Functional topography of cat primary auditory cortex: distribution of integrated excitation. , 1990, Journal of neurophysiology.

[35]  D. Hubel,et al.  Anatomy and physiology of a color system in the primate visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[36]  T. Imig,et al.  Binaural columns in the primary field (A1) of cat auditory cortex , 1977, Brain Research.

[37]  A. Galaburda,et al.  Cytoarchitectonic organization of the human auditory cortex , 1980, The Journal of comparative neurology.

[38]  M. Wong-Riley,et al.  Cytochrome oxidase in the human visual cortex: Distribution in the developing and the adult brain , 1993, Visual Neuroscience.

[39]  D. Hubel,et al.  The pattern of ocular dominance columns in macaque visual cortex revealed by a reduced silver stain , 1975, The Journal of comparative neurology.

[40]  R. Näätänen,et al.  Neuromagnetic responses of the human auditory cortex to short frequency glides , 1991, Neuroscience Letters.

[41]  M. Merzenich,et al.  Representation of the cochlear partition of the superior temporal plane of the macaque monkey. , 1973, Brain research.