Maximum Power Point Tracking Technique Based on Particle Swarm Optimization Method Applied to a Single-Phase Grid-Tied Photovoltaic System

This paper deals with a study of a maximum power point tracking (MPPT) technique based on the Particle Swarm Optimization (PSO) method, which is applied to a single-phase grid-tied photovoltaic system. Since photovoltaic panels have nonlinear voltage-current characteristic curves, when they are submitted to partial shading conditions, it is possible appear distinct local and global maximum power points. On the other hand, most traditional MPPT methods are not able to find the maximum global point for extraction the maximum power provided by the PV array. Therefore, in order to overcome this problem, MPPT-PSO based method is used for obtaining the maximum global point, maximizing the power extraction in the photovoltaic arrangements. Numerical simulations are presented to demonstrate the effectiveness of the proposed MPPT technique, when it is compared with the well-known Perturb and Observe (P&O) MPPT technique.

[1]  J L Agorreta,et al.  Modeling and Control of $N$ -Paralleled Grid-Connected Inverters With LCL Filter Coupled Due to Grid Impedance in PV Plants , 2011, IEEE Transactions on Power Electronics.

[2]  E Serban,et al.  A Control Strategy for a Distributed Power Generation Microgrid Application With Voltage- and Current-Controlled Source Converter , 2010, IEEE Transactions on Power Electronics.

[3]  J. A. Gow,et al.  Development of a photovoltaic array model for use in power-electronics simulation studies , 1999 .

[4]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[5]  Kashif Ishaque,et al.  An Improved Particle Swarm Optimization (PSO)–Based MPPT for PV With Reduced Steady-State Oscillation , 2012, IEEE Transactions on Power Electronics.

[6]  Chung-Yuen Won,et al.  A Real Maximum Power Point Tracking Method for Mismatching Compensation in PV Array Under Partially Shaded Conditions , 2011, IEEE Transactions on Power Electronics.

[7]  Kai Sun,et al.  A Modular Grid-Connected Photovoltaic Generation System Based on DC Bus , 2011, IEEE Transactions on Power Electronics.

[8]  Carlos A. Canesin,et al.  Evaluation of the Main MPPT Techniques for Photovoltaic Applications , 2013, IEEE Transactions on Industrial Electronics.

[9]  Masafumi Miyatake,et al.  Maximum Power Point Tracking of Multiple Photovoltaic Arrays: A PSO Approach , 2011, IEEE Transactions on Aerospace and Electronic Systems.

[10]  K. L. Lian,et al.  A Maximum Power Point Tracking Method Based on Perturb-and-Observe Combined With Particle Swarm Optimization , 2014, IEEE Journal of Photovoltaics.

[11]  Gayeon Kim,et al.  A novel two-mode MPPT control algorithm based on comparative study of existing algorithms , 2004 .

[12]  Yi-Hwa Liu,et al.  A Particle Swarm Optimization-Based Maximum Power Point Tracking Algorithm for PV Systems Operating Under Partially Shaded Conditions , 2012, IEEE Transactions on Energy Conversion.