Numerical determination of the competitive isotherm of enantiomers.

[1]  G. Guiochon,et al.  Study of the adsorption equilibria of the enantiomers of 1-phenyl-1-propanol on cellulose tribenzoate using a microbore column. , 2002, Journal of chromatography. A.

[2]  G. Guiochon,et al.  Modeling of the separation of the enantiomers of 1-phenyl-1-propanol on cellulose tribenzoate. , 2001, Analytical chemistry.

[3]  Andreas Seidel-Morgenstern,et al.  Application of gradients in the simulated moving bed process , 2001 .

[4]  J. Selker,et al.  Numerical estimation of multicomponent adsorption isotherms in preparative chromatography: implications of experimental error. , 2001, Journal of chromatography. A.

[5]  A. Seidel-Morgenstern,et al.  Frontal analysis method to determine competitive adsorption isotherms. , 2001, Journal of chromatography. A.

[6]  C. Ching,et al.  Kinetic and equilibrium study of the enantioseparation of fenoprofen in a batch setup , 2000 .

[7]  D. Antos,et al.  Determination of mobile phase effect on single-component adsorption isotherm by use of numerical estimation. , 2000, Journal of chromatography. A.

[8]  G. Guiochon,et al.  Multisolute adsorption equilibria in a reversed-phase liquid chromatography system , 2000 .

[9]  G. Guiochon,et al.  Modeling of separations by closed-loop steady-state recycling chromatography of a racemic pharmaceutical intermediate. , 2000, Journal of chromatography. A.

[10]  M. Juza,et al.  Development of an high-performance liquid chromatographic simulated moving bed separation from an industrial perspective. , 1999, Journal of chromatography. A.

[11]  Mauricio Sepúlveda,et al.  Determination of binary competitive equilibrium isotherms from the individual chromatographic band profiles , 1999 .

[12]  Mauricio Sepúlveda,et al.  Parameter identification for a model of chromatographic column , 1994 .

[13]  Anita M. Katti,et al.  Fundamentals of Preparative and Nonlinear Chromatography , 1994 .

[14]  G. Guiochon,et al.  Theoretical study of the accuracy and precision of the measurement of single-component isotherms by the elution by characteristic point method , 1994 .

[15]  G. Guiochon,et al.  Rapid simulation of chromatographic band profiles on personal computers , 1994 .

[16]  Stephen C. Jacobson,et al.  Determination of isotherms from chromatographic peak shapes , 1991 .

[17]  Zidu Ma,et al.  Prediction of binary, overloaded elution profiles using the simple wave effect , 1990 .

[18]  G. Guiochon,et al.  Chromatographic band profiles and band separation of enantiomers at high concentration , 1990 .

[19]  K. Burton,et al.  Optimization using the super-modified simplex method , 1990 .

[20]  M. Douglas LeVan,et al.  Binary Langmuir and Freundlich isotherms for ideal adsorbed solutions , 1981 .

[21]  P. R. Bevington,et al.  Data Reduction and Error Analysis for the Physical Sciences , 1969 .

[22]  H. Lilliefors On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown , 1967 .

[23]  J. Tóth Uniform and thermodynamically consistent interpretation of adsorption isotherms , 2002 .

[24]  J. Tóth,et al.  Adsorption : theory, modeling, and analysis , 2002 .

[25]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[26]  E. A. Guggenheim,et al.  Thermodynamics of monolayers , 1948 .