The Architecture of Biological Networks

An ambitious goal of contemporary biological research is the elucidation of the structure and functions of networks that constitute cells and organisms. In biological systems, networks appear in many different disguises, ranging from protein interactions to metabolic networks. The emergence of these networks is driven by self-organizing processes that are governed by simple but generic laws. While unraveling the complex and interwoven systems of different interacting units, it has become clear that the topology of networks of different biological origin share the same characteristics on the large scale. In this chapter, we survey the most prominent characteristics of biological networks, focusing on the emergence of the scale-free architecture and the hierarchical arrangement of modules.

[1]  Takashi Yura,et al.  Dynamic interplay between antagonistic pathways controlling the σ32 level in Escherichia coli , 2000 .

[2]  S. Fields,et al.  Genome-wide analysis of vaccinia virus protein-protein interactions. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Ioannis Xenarios,et al.  DIP: The Database of Interacting Proteins: 2001 update , 2001, Nucleic Acids Res..

[4]  James R. Knight,et al.  A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae , 2000, Nature.

[5]  Reka Albert,et al.  Mean-field theory for scale-free random networks , 1999 .

[6]  A. Barabasi,et al.  Comparable system-level organization of Archaea and Eukaryotes , 2001, Nature Genetics.

[7]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[8]  A. Wagner On the Source of Mutational Robustness in Genetic Networks of Yeast , 2000 .

[9]  Petter Holme,et al.  Subnetwork hierarchies of biochemical pathways , 2002, Bioinform..

[10]  Albert-László Barabási,et al.  Error and attack tolerance of complex networks , 2000, Nature.

[11]  Martin Schoen,et al.  Phase behavior of confined symmetric binary mixtures. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  J. Wojcik,et al.  The protein–protein interaction map of Helicobacter pylori , 2001, Nature.

[13]  B. Schwikowski,et al.  A network of protein–protein interactions in yeast , 2000, Nature Biotechnology.

[14]  Stefan Wuchty,et al.  Interaction and domain networks of yeast , 2002, Proteomics.

[15]  S. Teichmann,et al.  Domain combinations in archaeal, eubacterial and eukaryotic proteomes. , 2001, Journal of molecular biology.

[16]  Ricard V. Solé,et al.  A Model of Large-Scale proteome Evolution , 2002, Adv. Complex Syst..

[17]  Alessandro Vespignani,et al.  Large-scale topological and dynamical properties of the Internet. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Xerox,et al.  The Small World , 1999 .

[19]  M. Mann,et al.  Proteomics to study genes and genomes , 2000, Nature.

[20]  D. Fell,et al.  The small world inside large metabolic networks , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[21]  Sharon L. Milgram,et al.  The Small World Problem , 1967 .

[22]  Peter D. Karp,et al.  The EcoCyc and MetaCyc databases , 2000, Nucleic Acids Res..

[23]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[24]  B. Kahng,et al.  Geometric fractal growth model for scale-free networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[26]  Jong H. Park,et al.  Mapping protein family interactions: intramolecular and intermolecular protein family interaction repertoires in the PDB and yeast. , 2001, Journal of molecular biology.

[27]  A. Barabasi,et al.  Lethality and centrality in protein networks , 2001, Nature.

[28]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994, Structural analysis in the social sciences.

[29]  Alessandro Vespignani,et al.  Epidemic spreading in scale-free networks. , 2000, Physical review letters.

[30]  E. Koonin,et al.  Scale-free networks in biology: new insights into the fundamentals of evolution? , 2002, BioEssays : news and reviews in molecular, cellular and developmental biology.

[31]  S. Redner How popular is your paper? An empirical study of the citation distribution , 1998, cond-mat/9804163.

[32]  John Doyle,et al.  Module-Based Analysis of Robustness Tradeoffs in the Heat Shock Response System , 2006, PLoS Comput. Biol..

[33]  Albert-László Barabási,et al.  Life's Complexity Pyramid , 2002, Science.

[34]  Albert-László Barabási,et al.  Hierarchical organization in complex networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  Gary D Bader,et al.  Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry , 2002, Nature.

[36]  P. Bork,et al.  Functional organization of the yeast proteome by systematic analysis of protein complexes , 2002, Nature.

[37]  F. Baas,et al.  The Human Transcriptome Map: Clustering of Highly Expressed Genes in Chromosomal Domains , 2001, Science.

[38]  T. Ito,et al.  Toward a protein-protein interaction map of the budding yeast: A comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[39]  D. Fell,et al.  The small world of metabolism , 2000, Nature Biotechnology.

[40]  A. Barab Deterministic scale-free networks , 2007 .

[41]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[42]  M. Vidal,et al.  Protein interaction mapping in C. elegans using proteins involved in vulval development. , 2000, Science.

[43]  M. Newman,et al.  The structure of scientific collaboration networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[44]  R. Solé,et al.  Evolving protein interaction networks through gene duplication. , 2003, Journal of theoretical biology.

[45]  K. Kohn Molecular interaction map of the mammalian cell cycle control and DNA repair systems. , 1999, Molecular biology of the cell.

[46]  B. Bollobás The evolution of random graphs , 1984 .

[47]  S. N. Dorogovtsev,et al.  Pseudofractal scale-free web. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  A. Wagner The yeast protein interaction network evolves rapidly and contains few redundant duplicate genes. , 2001, Molecular biology and evolution.

[49]  A. Barabasi,et al.  Hierarchical Organization of Modularity in Metabolic Networks , 2002, Science.

[50]  A. Levine,et al.  Surfing the p53 network , 2000, Nature.

[51]  L. Amaral,et al.  The web of human sexual contacts , 2001, Nature.

[52]  M. Khammash,et al.  Systems biology: from physiology to gene regulation , 2004, IEEE Control Systems.

[53]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[54]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[55]  Michalis Faloutsos,et al.  On power-law relationships of the Internet topology , 1999, SIGCOMM '99.

[56]  A. Wagner Robustness against mutations in genetic networks of yeast , 2000, Nature Genetics.

[57]  R. Ozawa,et al.  A comprehensive two-hybrid analysis to explore the yeast protein interactome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[58]  Hawoong Jeong,et al.  Prediction of Protein Essentiality Based on Genomic Data , 2002, Complexus.

[59]  S. Shen-Orr,et al.  Network motifs in the transcriptional regulation network of Escherichia coli , 2002, Nature Genetics.

[60]  A. Barabasi,et al.  Functional and topological characterization of protein interaction networks , 2004, Proteomics.

[61]  D. Lauffenburger Cell signaling pathways as control modules: complexity for simplicity? , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Yoshinori Akiyama,et al.  Evidence for an active role of the DnaK chaperone system in the degradation of σ32 , 2000 .

[63]  Stefan Wuchty,et al.  Small worlds in RNA structures. , 2003, Nucleic acids research.

[64]  C. Burge,et al.  Chipping away at the transcriptome , 2001, Nature Genetics.

[65]  Dmitrij Frishman,et al.  MIPS: a database for genomes and protein sequences , 1999, Nucleic Acids Res..

[66]  A. Vespignani,et al.  Modeling of Protein Interaction Networks , 2001, Complexus.

[67]  Natalia Maltsev,et al.  WIT: integrated system for high-throughput genome sequence analysis and metabolic reconstruction , 2000, Nucleic Acids Res..

[68]  P. Legrain,et al.  A genomic approach of the hepatitis C virus generates a protein interaction map. , 2000, Gene.

[69]  S. Wuchty Scale-free behavior in protein domain networks. , 2001, Molecular biology and evolution.

[70]  Andrei Z. Broder,et al.  Graph structure in the Web , 2000, Comput. Networks.

[71]  Albert-László Barabási,et al.  Internet: Diameter of the World-Wide Web , 1999, Nature.

[72]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[73]  John C. Doyle,et al.  Surviving heat shock: control strategies for robustness and performance. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[74]  Ioannis Xenarios,et al.  DIP: the Database of Interacting Proteins , 2000, Nucleic Acids Res..

[75]  C. Lee Giles,et al.  Accessibility of information on the web , 1999, Nature.