Mixed-volume computation by dynamic lifting applied to polynomial system solving

The aim of this paper is to present a flexible approach for the efficient computation of the mixed volume of a tuple of polytopes. In order to compute the mixed volume, a mixed subdivision of the tuple of polytopes is needed, which can be obtained by embedding the polytopes in a higher-dimensional space, i.e., by lifting them. Dynamic lifting is opposed to the static approach. This means that one considers one point at a time and only fixes the value of the lifting function when the point really influences the mixed volume. Conservative lifting functions have been developed for this purpose. This provides us with a deterministic manipulation of the lifting for computing mixed volumes, which rules out randomness conditions. Cost estimates for the algorithm are given. The implications of dynamic lifting on polyhedral homotopy methods for the solution of polynomial systems are investigated and applications are presented.

[1]  A. Khovanskii Newton polyhedra and the genus of complete intersections , 1978 .

[2]  G. Björck,et al.  A Faster Way to Count the Solution of Inhomogeneous Systems of Algebraic Equations, with Applications to Cyclic n-Roots , 1991, J. Symb. Comput..

[3]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[4]  A. Morgan,et al.  SOLVING THE 6R INVERSE POSITION PROBLEM USING A GENERIC-CASE SOLUTION METHODOLOGY , 1991 .

[5]  J. Canny,et al.  Efficient Incremental Algorithms for the , 1994 .

[6]  A. Morgan,et al.  Complete Solution of the Nine-Point Path Synthesis Problem for Four-Bar Linkages , 1992 .

[7]  G. Ziegler Lectures on Polytopes , 1994 .

[8]  Bernd Sturmfels,et al.  Chow polytopes and general resultants , 1992 .

[9]  Peter Gritzmann,et al.  Minkowski Addition of Polytopes: Computational Complexity and Applications to Gröbner Basis , 1993, SIAM J. Discret. Math..

[10]  John F. Canny,et al.  An Efficient Algorithm for the Sparse Mixed Resultant , 1993, AAECC.

[11]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[12]  Bernd Sturmfels,et al.  A polyhedral method for solving sparse polynomial systems , 1995 .

[13]  S. Smale,et al.  Complexity of Bézout’s theorem. I. Geometric aspects , 1993 .

[14]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[15]  A. G. Kushnirenko,et al.  Newton polytopes and the Bezout theorem , 1976 .

[16]  Stephen Smale,et al.  Complexity of Bezout's Theorem V: Polynomial Time , 1994, Theor. Comput. Sci..

[17]  J. Verschelde,et al.  Symmetrical Newton Polytopes for Solving Sparse Polynomial Systems , 1995 .

[18]  Charles W. Wampler Bezout number calculations for multi-homogeneous polynomial systems , 1992 .

[19]  J. Maurice Rojas,et al.  An optimal condition for determining the exact number of roots of a polynomial system , 1991, ISSAC '91.

[20]  D. N. Bernshtein The number of roots of a system of equations , 1975 .

[21]  Charles W. Wampler,et al.  A product-decomposition bound for Bezout numbers , 1995 .

[22]  Layne T. Watson,et al.  Mathematical reduction of a heart dipole model , 1989 .

[23]  Jan Verschelde,et al.  Homotopies for Solving Polynomial Systems Within a Bounded Domain , 1994, Theor. Comput. Sci..

[24]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[25]  Rolf Schneider,et al.  Polytopes and Brunn-Minkowski Theory , 1994 .

[26]  Peter Gritzmann,et al.  On the Complexity of some Basic Problems in Computational Convexity: II. Volume and mixed volumes , 1994, Universität Trier, Mathematik/Informatik, Forschungsbericht.

[27]  P. McMullen Convex Sets and Their Applications , 1982 .

[28]  Ralf Fröberg,et al.  How we proved that there are exactly 924 cyclic 7-roots , 1991, ISSAC '91.

[29]  Kurt Mehlhorn,et al.  Four Results on Randomized Incremental Constructions , 1992, Comput. Geom..

[30]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .

[31]  Carl W. Lee,et al.  Regular Triangulations of Convex Polvtopes , 1990, Applied Geometry And Discrete Mathematics.

[32]  J. Verschelde,et al.  Homotopies exploiting Newton polytopes for solving sparse polynomial systems , 1994 .

[33]  Ioannis Z. Emiris,et al.  Sparse elimination and applications in kinematics , 1994 .

[34]  O. Faugeras,et al.  Motion from point matches: Multiplicity of solutions , 1989, [1989] Proceedings. Workshop on Visual Motion.

[35]  Martin E. Dyer,et al.  On the Complexity of Computing the Volume of a Polyhedron , 1988, SIAM J. Comput..

[36]  Michael A. Facello,et al.  Implementation of a randomized algorithm for Delaunay and regular triangulations in three dimensions , 1995, Comput. Aided Geom. Des..

[37]  Bernd Sturmfels,et al.  On the Newton Polytope of the Resultant , 1994 .

[38]  Andrei Zelevinsky,et al.  Generalized Euler integrals and A-hypergeometric functions , 1990 .

[39]  A. Morgan,et al.  Coefficient-parameter polynomial continuation , 1989 .

[40]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[41]  P. Mcmullen GEOMETRIC INEQUALITIES (Grundlehren der mathematischen Wissenschaften 285) , 1989 .

[42]  V. Klee,et al.  Mathematical Programming and Convex Geometry , 1993 .

[43]  Ulrich Betke,et al.  Mixed volumes of polytopes , 1992 .

[44]  David Avis,et al.  A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra , 1992, Discret. Comput. Geom..

[45]  A. Morgan Solving Polynomial Systems Using Continuation for Engineering and Scientific Problems , 1987 .

[46]  J. Maurice Rojas,et al.  A Convex Geometric Approach to Counting the Roots of a Polynomial System , 1994, Theor. Comput. Sci..

[47]  B. C. Hodgkin,et al.  Determination of Magnitudes, Directions, and Locations of Two Independent Dipoles in a Circular Conducting Region from Boundary Potential Measurements , 1981, IEEE Transactions on Biomedical Engineering.

[48]  Vadim Shapiro,et al.  Box-bisection for solving second-degree systems and the problem of clustering , 1987, TOMS.

[49]  G. Björck,et al.  Methods to divide out certain solutions from systems of algebraic equations, applied to find all cyclic 8-roots , 1994 .

[50]  H. P. Williams THEORY OF LINEAR AND INTEGER PROGRAMMING (Wiley-Interscience Series in Discrete Mathematics and Optimization) , 1989 .