On the width of the electrochemically active region in mixed conducting solid oxide fuel cell cathodes

Abstract The width of the electrochemically active zone in a mixed conducting solid oxide fuel cell (SOFC) cathode, i.e. the spatial extension of the three-phase-boundary (3PB) region is numerically calculated for the case when oxide ion transport through the electrode bulk determines the reaction rate of the cathodic oxygen reduction reaction. The current density distribution in the cathode exhibits a sharp maximum at the 3PB and a major fraction of the total current flows in narrow zones with a width of a few percent of the electrode particle size (e.g. in the case of 1.6 μm particle size: approximately 2/3 of the current flows in a zone with a width of 60 nm). Hence, the corresponding polarisation resistance is almost inversely proportional to the 3PB length. In a wide parameter range an increasing ionic conductivity of the mixed conductor does not broaden the electrochemically active region. A formula is presented which allows an estimate of the polarisation resistance of a mixed conducting electrode if ionic transport through the electrode bulk is rate limiting.

[1]  M. Mogensen,et al.  Composite Electrodes in Solid Oxide Fuel Cells and Similar Solid State Devices , 2000 .

[2]  Junichiro Mizusaki,et al.  Reaction Kinetics and Microstructure of the Solid Oxide Fuel Cells Air Electrode La0.6Ca0.4MnO3 / YSZ , 1991 .

[3]  N. Sakai,et al.  Oxygen isotope exchange with a dense La0.6Sr0.4CoO3−δ electrode on a Ce0.9Ca0.1O1.9 electrolyte , 1999 .

[4]  M. Mogensen,et al.  ac Impedance study of the oxygen reduction mechanism on La1−xSrxMnO3 in solid oxide fuel cells , 1993 .

[5]  Meilin Liu,et al.  Equivalent Circuit Approximation to Porous Mixed‐Conducting Oxygen Electrodes in Solid‐State Cells , 1998 .

[6]  Svein Sunde,et al.  Mathematical Modeling of Oxygen Exchange and Transport in Air‐Perovskite‐YSZ Interface Regions I. Reduction of Intermediately Adsorbed Oxygen , 1997 .

[7]  T. Pagnier,et al.  Oxygen Reduction at La0.5Sr0.5MnO3 Thin Film/Yttria‐Stabilized Zirconia Interface Studied by Impedance Spectroscopy , 1994 .

[8]  Y. Takeda,et al.  Perovskite-type oxides as oxygen electrodes for high temperature oxide fuel cells , 1987 .

[9]  Svein Sunde,et al.  Mathematical Modeling of Oxygen Exchange and Transport in Air‐Perovskite‐Yttria‐Stabilized Zirconia Interface Regions II. Direct Exchange of Oxygen Vacancies , 1998 .

[10]  Koji Amano,et al.  Electrode reaction at Pt, O2(g)/stabilized zirconia interfaces. Part I: Theoretical consideration of reaction model , 1987 .

[11]  K. Wippermann,et al.  The kinetics of electrochemical reactions on high temperature fuel cell electrodes , 1994 .

[12]  C. Schwandt,et al.  Kinetics of Oxygen, Platinum/Stabilized Zirconia and Oxygen, Gold/Stabilized Zirconia Electrodes under Equilibrium Conditions , 1997 .

[13]  M. Kleitz,et al.  Reaction-zone expansions and mechanism of the O{sub 2}, Ag/yttria-stabilized zirconia electrode reaction , 1997 .

[14]  M. Watanabe,et al.  Effect of Ionic Conductivity of Zirconia Electrolytes on the Polarization Behavior of Ceria‐Based Anodes in Solid Oxide Fuel Cells , 1997 .

[15]  L. Gauckler,et al.  Microstructure‐Property Relations of Solid Oxide Fuel Cell Cathodes and Current Collectors Cathodic Polarization and Ohmic Resistance , 1996 .

[16]  B. Steele,et al.  Properties of La0.6Sr0.4Co0.2Fe0.8O3-x (LSCF) double layer cathodes on gadolinium-doped cerium oxide (CGO) electrolytes - II. Role of oxygen exchange and diffusion , 1998 .

[17]  A. Mcevoy,et al.  A study on the La1 − xSrxMnO3 oxygen cathode , 1996 .

[18]  Stuart B. Adler,et al.  Electrode Kinetics of Porous Mixed‐Conducting Oxygen Electrodes , 1996 .

[19]  Meilin Liu,et al.  Significance of interfaces in solid-state cells with porous electrodes of mixed ionic–electronic conductors , 1998 .

[20]  A. Hammouche,et al.  Impedance spectroscopy analysis of La1 − xSritxMnO3-yttria-stabilized zirconia electrode kinetics , 1995 .

[21]  A. Hammouche,et al.  Electrocatalytic Properties and Nonstoichiometry of the High Temperature Air Electrode La1 − x Sr x MnO3 , 1991 .

[22]  H. Tagawa,et al.  High temperature electrocatalytic properties of the SOFC air electrode La0.8Sr0.2MnO3/YSZ , 1998 .

[23]  Junichiro Mizusaki,et al.  A Chemical Diffusion‐Controlled Electrode Reaction at the Compact La1 − x Sr x MnO3/Stabilized Zirconia Interface in Oxygen Atmospheres , 1996 .

[24]  L. D. Haart,et al.  Deposition and Electrical Properties of Thin Porous Ceramic Electrode Layers for Solid Oxide Fuel Cell Application , 1991 .

[25]  Wolfgang Göpel,et al.  Active Reaction Sites for Oxygen Reduction in La0.9Sr0.1,MnO3/YSZ Electrodes , 1995 .

[26]  Jürgen Fleig,et al.  Geometry Dependence of Cathode Polarization in Solid Oxide Fuel Cells Investigated by Defined Sr ‐ Doped LaMnO3 Microelectrodes , 1999 .

[27]  H. Bouwmeester,et al.  Electrode Properties of Sr‐Doped LaMnO3 on Yttria‐Stabilized Zirconia I. Three‐Phase Boundary Area , 1997 .

[28]  J. Kilner,et al.  Oxygen transport in La1−xSrxMn1−yCoyO3±δ perovskites: Part I. Oxygen tracer diffusion , 1998 .

[29]  M. Verkerk,et al.  Oxygen Transfer on Substituted ZrO2, Bi2O3, and CeO2 Electrolytes with Platinum Electrodes. I. Electrode Resistance by D-C Polarization , 1983 .

[30]  A. Mcevoy,et al.  Oxygen diffusion through silver cathodes for solid oxide fuel cells , 1994 .

[31]  A. Nowick,et al.  Cathodic and Anodic Polarization Phenomena at Platinum Electrodes with Doped CeO2 as Electrolyte I . Steady‐State Overpotential , 1979 .

[32]  Ludwig J. Gauckler,et al.  La2Zr2O7 formation and oxygen reduction kinetics of the La0.85Sr0.15MnyO3, O2(g)|YSZ system , 1998 .

[33]  M. Lankhorst,et al.  Chemical diffusion and oxygen exchange of La0.6Sr0.4Co0.6Fe0.4O3−δ , 1997 .

[34]  F. Berkel,et al.  Characterization of solid oxide fuel cell electrodes by impedance spectroscopy and I–V characteristics , 1994 .

[35]  M. Kleitz,et al.  Optimized SOFC electrode microstructure , 1996 .

[36]  B. Boukamp,et al.  Electrode polarization at the Au, O2 (g) / yttria stabilized zirconia interface. Part II: electrochemical measurements and analysis , 1991 .

[37]  C. Chen,et al.  Ionic conductivity of perovskite LaCoO3 measured by oxygen permeation technique , 1997 .

[38]  Henricus J.M. Bouwmeester,et al.  Electrode Properties of Sr‐Doped LaMnO3 on Yttria‐Stabilized Zirconia II. Electrode Kinetics , 1997 .

[39]  Tohru Kato,et al.  Active Sites Imaging for Oxygen Reduction at the La0.9Sr0.1MnO3 − x /Yttria‐Stabilized Zirconia Interface by Secondary‐Ion Mass Spectrometry , 1998 .

[40]  Stuart B. Adler,et al.  Mechanism and kinetics of oxygen reduction on porous La1−xSrxCoO3−δ electrodes , 1998 .

[41]  Jürgen Fleig,et al.  The Influence of Laterally Inhomogeneous Contacts on the Impedance of Solid Materials: A Three-Dimensional Finite-Element Study , 1997 .

[42]  John A. Kilner,et al.  Oxygen transport in La0.6Sr0.4Co0.2Fe0.8O3-δ , 1999 .

[43]  M. Kleitz,et al.  Electrocatalysis and inductive effects at the gas, Pt/stabilized zirconia interface , 1987 .