A mixed finite element method for a quasi‐Newtonian fluid flow
暂无分享,去创建一个
[1] P. Ming,et al. Dual combined finite element methods for Non-Newtonian flow (II) parameter-dependent problem , 2000 .
[2] M. Fortin,et al. Dual hybrid methods for the elasticity and the Stokes problems: a unified approach , 1997 .
[3] George M. Fix,et al. HYBRID FINITE ELEMENT METHODS , 1976 .
[4] Mohamed Farhloul,et al. On a mixed finite element method for the p-Laplacian , 2000 .
[5] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[6] J. Baranger,et al. Analyse numerique des ecoulements quasi-Newtoniens dont la viscosite obeit a la loi puissance ou la loi de carreau , 1990 .
[7] Jacques Baranger,et al. Numerical analysis of quasi-Newtonian flow obeying the power low or the Carreau flow , 1990 .
[8] Jacques Baranger,et al. Numerical analysis of a three-fields model for a quasi-Newtonian flow , 1993 .
[9] Wenbin Liu,et al. Finite element error analysis of a quasi-Newtonian flow obeying the Carreau or power law , 1993 .
[10] C. E. Vulliamy. 82. A Note on Proto-Neolithic Flint Implements from the Chiltern Hills. , 1927 .
[11] Abimael F. D. Loula,et al. Finite element analysis of nonlinear creeping flows , 1990 .
[12] L. D. Marini,et al. Two families of mixed finite elements for second order elliptic problems , 1985 .
[13] W. B. Liu,et al. Quasi-norm Error Bounds for the Nite Element Approximation of a Non-newtonian Ow , 1994 .
[14] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[15] G. Galdi. An Introduction to the Mathematical Theory of the Navier-Stokes Equations : Volume I: Linearised Steady Problems , 1994 .
[16] Mohamed Farhloul,et al. A mixed finite element method for a Ladyzhenskaya model , 2002 .
[17] H. Manouzi,et al. Mixed finite element analysis of a non‐linear three‐fields Stokes model , 2001 .
[18] P. Raviart,et al. A mixed finite element method for 2-nd order elliptic problems , 1977 .
[19] J. Nédélec. Mixed finite elements in ℝ3 , 1980 .
[20] D. Sandri,et al. Sur l'approximation numérique des écoulements quasi-Newtoniens dont la viscosité suit la loi puissance ou la loi de carreau , 1993 .