Experimental realization of non-Abelian non-adiabatic geometric gates
暂无分享,去创建一个
S. Berger | A. Wallraff | M. Pechal | A. A. Abdumalikov | S. Filipp | S. Filipp | J. Fink | A. Wallraff | M. Pechal | S. Berger | K. Júlíusson | J. M. Fink | K. Juliusson
[1] V. Lembessis,et al. Artificial gauge potentials for neutral atoms: an application in evanescent light fields , 2014 .
[2] H. Riemann,et al. Geometric phase gates with adiabatic control in electron spin resonance , 2012, 1208.0555.
[3] Jiannis K. Pachos,et al. Introduction to Topological Quantum Computation , 2012 .
[4] D. M. Tong,et al. Robustness of nonadiabatic holonomic gates , 2012, 1204.5144.
[5] A. A. Abdumalikov,et al. Geometric phase and nonadiabatic effects in an electronic harmonic oscillator. , 2011, Physical review letters.
[6] D. M. Tong,et al. Non-adiabatic holonomic quantum computation , 2011, 1107.5127.
[7] S. Girvin,et al. Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. , 2011, Physical review letters.
[8] A. Shnirman,et al. Geometric quantum gates with superconducting qubits , 2011, 1104.0159.
[9] Mikko M ott onen,et al. Geometric Phase Gates via Adiabatic Control Using Electron Spin Resonance , 2011 .
[10] S. Filipp,et al. Control and tomography of a three level superconducting artificial atom. , 2010, Physical review letters.
[11] Michael V Berry,et al. Geometric phase memories , 2010 .
[12] Canada,et al. Dynamics of dispersive single-qubit readout in circuit quantum electrodynamics , 2009, 0907.2549.
[13] J M Gambetta,et al. Simple pulses for elimination of leakage in weakly nonlinear qubits. , 2009, Physical review letters.
[14] P Geltenbort,et al. Experimental demonstration of the stability of Berry's phase for a spin-1/2 particle. , 2008, Physical review letters.
[15] N. Read,et al. Non-Abelian adiabatic statistics and Hall viscosity in quantum Hall states and p(x) + ip(y) paired superfluids , 2008, 0805.2507.
[16] Erik Sjöqvist,et al. A new phase in quantum computation , 2008 .
[17] J. Pekola,et al. Experimental determination of the berry phase in a superconducting charge pump. , 2007, Physical review letters.
[18] S. Simon,et al. Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.
[19] R. J. Schoelkopf,et al. Observation of Berry's Phase in a Solid-State Qubit , 2007, Science.
[20] S. Girvin,et al. Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.
[21] Z. D. Wang,et al. Unconventional geometric quantum computation. , 2003, Physical review letters.
[22] Fausto Rossi,et al. Holonomic quantum gates: A semiconductor-based implementation , 2003, quant-ph/0301090.
[23] J. Fiurášek,et al. Quantum inference of states and processes , 2002, quant-ph/0210146.
[24] J. Siewert,et al. Non-Abelian holonomies, charge pumping, and quantum computation with Josephson junctions. , 2002, Physical review letters.
[25] Shi-Liang Zhu,et al. Implementation of universal quantum gates based on nonadiabatic geometric phases. , 2002, Physical review letters.
[26] J. Cirac,et al. Geometric Manipulation of Trapped Ions for Quantum Computation , 2001, Science.
[27] Paolo Zanardi,et al. Holonomic quantum computation , 1999 .
[28] Pines,et al. Non-Abelian effects in a quadrupole system rotating around two axes. , 1990, Physical review. A, Atomic, molecular, and optical physics.
[29] Jeeva Anandan,et al. Non-adiabatic non-abelian geometric phase , 1988 .
[30] R. Tycko,et al. Adiabatic rotational splittings and Berry's phase in nuclear quadrupole resonance. , 1987, Physical review letters.
[31] Aharonov,et al. Phase change during a cyclic quantum evolution. , 1987, Physical review letters.
[32] Frank Wilczek,et al. Appearance of Gauge Structure in Simple Dynamical Systems , 1984 .
[33] M. Berry. Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[34] C. Mead,et al. On the determination of Born–Oppenheimer nuclear motion wave functions including complications due to conical intersections and identical nuclei , 1979 .
[35] S. Pancharatnam,et al. Generalized theory of interference, and its applications , 1956 .