Experimental realization of non-Abelian non-adiabatic geometric gates

[1]  V. Lembessis,et al.  Artificial gauge potentials for neutral atoms: an application in evanescent light fields , 2014 .

[2]  H. Riemann,et al.  Geometric phase gates with adiabatic control in electron spin resonance , 2012, 1208.0555.

[3]  Jiannis K. Pachos,et al.  Introduction to Topological Quantum Computation , 2012 .

[4]  D. M. Tong,et al.  Robustness of nonadiabatic holonomic gates , 2012, 1204.5144.

[5]  A. A. Abdumalikov,et al.  Geometric phase and nonadiabatic effects in an electronic harmonic oscillator. , 2011, Physical review letters.

[6]  D. M. Tong,et al.  Non-adiabatic holonomic quantum computation , 2011, 1107.5127.

[7]  S. Girvin,et al.  Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. , 2011, Physical review letters.

[8]  A. Shnirman,et al.  Geometric quantum gates with superconducting qubits , 2011, 1104.0159.

[9]  Mikko M ott onen,et al.  Geometric Phase Gates via Adiabatic Control Using Electron Spin Resonance , 2011 .

[10]  S. Filipp,et al.  Control and tomography of a three level superconducting artificial atom. , 2010, Physical review letters.

[11]  Michael V Berry,et al.  Geometric phase memories , 2010 .

[12]  Canada,et al.  Dynamics of dispersive single-qubit readout in circuit quantum electrodynamics , 2009, 0907.2549.

[13]  J M Gambetta,et al.  Simple pulses for elimination of leakage in weakly nonlinear qubits. , 2009, Physical review letters.

[14]  P Geltenbort,et al.  Experimental demonstration of the stability of Berry's phase for a spin-1/2 particle. , 2008, Physical review letters.

[15]  N. Read,et al.  Non-Abelian adiabatic statistics and Hall viscosity in quantum Hall states and p(x) + ip(y) paired superfluids , 2008, 0805.2507.

[16]  Erik Sjöqvist,et al.  A new phase in quantum computation , 2008 .

[17]  J. Pekola,et al.  Experimental determination of the berry phase in a superconducting charge pump. , 2007, Physical review letters.

[18]  S. Simon,et al.  Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.

[19]  R. J. Schoelkopf,et al.  Observation of Berry's Phase in a Solid-State Qubit , 2007, Science.

[20]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[21]  Z. D. Wang,et al.  Unconventional geometric quantum computation. , 2003, Physical review letters.

[22]  Fausto Rossi,et al.  Holonomic quantum gates: A semiconductor-based implementation , 2003, quant-ph/0301090.

[23]  J. Fiurášek,et al.  Quantum inference of states and processes , 2002, quant-ph/0210146.

[24]  J. Siewert,et al.  Non-Abelian holonomies, charge pumping, and quantum computation with Josephson junctions. , 2002, Physical review letters.

[25]  Shi-Liang Zhu,et al.  Implementation of universal quantum gates based on nonadiabatic geometric phases. , 2002, Physical review letters.

[26]  J. Cirac,et al.  Geometric Manipulation of Trapped Ions for Quantum Computation , 2001, Science.

[27]  Paolo Zanardi,et al.  Holonomic quantum computation , 1999 .

[28]  Pines,et al.  Non-Abelian effects in a quadrupole system rotating around two axes. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[29]  Jeeva Anandan,et al.  Non-adiabatic non-abelian geometric phase , 1988 .

[30]  R. Tycko,et al.  Adiabatic rotational splittings and Berry's phase in nuclear quadrupole resonance. , 1987, Physical review letters.

[31]  Aharonov,et al.  Phase change during a cyclic quantum evolution. , 1987, Physical review letters.

[32]  Frank Wilczek,et al.  Appearance of Gauge Structure in Simple Dynamical Systems , 1984 .

[33]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[34]  C. Mead,et al.  On the determination of Born–Oppenheimer nuclear motion wave functions including complications due to conical intersections and identical nuclei , 1979 .

[35]  S. Pancharatnam,et al.  Generalized theory of interference, and its applications , 1956 .