Spectrum of the product of independent random Gaussian matrices.
暂无分享,去创建一个
Z. Burda | B. Waclaw | R. Janik | B Waclaw | Z Burda | R A Janik | Zdzislaw Burda | Bartlomiej Waclaw
[1] M. Stephanov,et al. Random Matrices , 2005, hep-ph/0509286.
[2] Maciej A. Nowak,et al. Non-Hermitian random matrix models: Free random variable approach , 1997 .
[3] Verbaarschot,et al. Spectral density of the QCD Dirac operator near zero virtuality. , 1993, Physical Review Letters.
[4] G. Akemann,et al. The chiral Gaussian two-matrix ensemble of real asymmetric matrices , 2009, 0911.1276.
[5] A. Zee,et al. Non-gaussian non-hermitian random matrix theory: Phase transition and addition formalism , 1997 .
[6] Sommers,et al. Spectrum of large random asymmetric matrices. , 1988, Physical review letters.
[7] G. Akemann. The complex Laguerre symplectic ensemble of non-Hermitian matrices , 2005, hep-th/0507156.
[8] V. Girko. Spectral theory of random matrices , 1985 .
[9] Stefan Thurner,et al. Random matrix ensembles of time-lagged correlation matrices: derivation of eigenvalue spectra and analysis of financial time-series , 2006 .
[10] Y. Fyodorov,et al. Almost-Hermitian random matrices: eigenvalue density in the complex plane , 1996, cond-mat/9606173.
[11] H. Sommers,et al. Chaotic scattering: the supersymmetry method for large number of channels , 1995 .
[12] Freeman J. Dyson,et al. The Threefold Way. Algebraic Structure of Symmetry Groups and Ensembles in Quantum Mechanics , 1962 .
[13] Jerzy Jurkiewicz,et al. Infinite products of large random matrices and matrix-valued diffusion , 2003 .
[14] R. Speicher,et al. Commutators of free random variables , 1996, funct-an/9612001.
[15] K. Efetov. Supersymmetry and theory of disordered metals , 1983 .
[16] T. Guhr,et al. RANDOM-MATRIX THEORIES IN QUANTUM PHYSICS : COMMON CONCEPTS , 1997, cond-mat/9707301.
[17] Maciej A. Nowak,et al. Non-hermitian random matrix models , 1996, cond-mat/9612240.
[18] A. Edelman. The Probability that a Random Real Gaussian Matrix haskReal Eigenvalues, Related Distributions, and the Circular Law , 1997 .
[19] F. Dyson. Statistical Theory of the Energy Levels of Complex Systems. I , 1962 .
[20] H. Sommers,et al. Statistics of complex levels of random matrices for decaying systems , 1992 .
[21] G. Hooft. A Planar Diagram Theory for Strong Interactions , 1974 .
[22] M. Nowak,et al. Green's functions in non-hermitian random matrix models☆ , 1999, cond-mat/9909085.
[23] G. Akemann,et al. Integrable Structure of Ginibre’s Ensemble of Real Random Matrices and a Pfaffian Integration Theorem , 2007, math-ph/0703019.
[24] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[25] J. Osborn. Universal results from an alternate random-matrix model for QCD with a baryon chemical potential. , 2004, Physical review letters.
[26] Y. Fyodorov,et al. Statistics of resonance poles, phase shifts and time delays in quantum chaotic scattering: Random matrix approach for systems with broken time-reversal invariance , 1997 .
[27] A. Zee,et al. Renormalizing rectangles and other topics in random matrix theory , 1996, cond-mat/9609190.
[28] Alexandru Nica,et al. Free random variables , 1992 .
[29] A. Zee,et al. Non-hermitian random matrix theory: Method of hermitian reduction , 1997 .
[30] J. Ginibre. Statistical Ensembles of Complex, Quaternion, and Real Matrices , 1965 .
[31] Z. Burda,et al. Signal and Noise in Correlation Matrix , 2003, cond-mat/0305627.
[32] F. Dyson. A Brownian‐Motion Model for the Eigenvalues of a Random Matrix , 1962 .
[33] L. Pastur. On the spectrum of random matrices , 1972 .
[34] B. Swart,et al. Quantitative Finance , 2006, Metals and Energy Finance.