Spectrum of the product of independent random Gaussian matrices.

We show that the eigenvalue density of a product X=X1X2...XM of M independent NxN Gaussian random matrices in the limit N-->infinity is rotationally symmetric in the complex plane and is given by a simple expression rho(z,z)=1/Mpisigma(-2/M)|z|(-2+(2/M)) for |z|<or=sigma, and is zero for |z|>sigma. The parameter sigma corresponds to the radius of the circular support and is related to the amplitude of the Gaussian fluctuations. This form of the eigenvalue density is highly universal. It is identical for products of Gaussian Hermitian, non-Hermitian, and real or complex random matrices. It does not change even if the matrices in the product are taken from different Gaussian ensembles. We present a self-contained derivation of this result using a planar diagrammatic technique. Additionally, we conjecture that this distribution also holds for any matrices whose elements are independent centered random variables with a finite variance or even more generally for matrices which fulfill Pastur-Lindeberg's condition. We provide a numerical evidence supporting this conjecture.

[1]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[2]  Maciej A. Nowak,et al.  Non-Hermitian random matrix models: Free random variable approach , 1997 .

[3]  Verbaarschot,et al.  Spectral density of the QCD Dirac operator near zero virtuality. , 1993, Physical Review Letters.

[4]  G. Akemann,et al.  The chiral Gaussian two-matrix ensemble of real asymmetric matrices , 2009, 0911.1276.

[5]  A. Zee,et al.  Non-gaussian non-hermitian random matrix theory: Phase transition and addition formalism , 1997 .

[6]  Sommers,et al.  Spectrum of large random asymmetric matrices. , 1988, Physical review letters.

[7]  G. Akemann The complex Laguerre symplectic ensemble of non-Hermitian matrices , 2005, hep-th/0507156.

[8]  V. Girko Spectral theory of random matrices , 1985 .

[9]  Stefan Thurner,et al.  Random matrix ensembles of time-lagged correlation matrices: derivation of eigenvalue spectra and analysis of financial time-series , 2006 .

[10]  Y. Fyodorov,et al.  Almost-Hermitian random matrices: eigenvalue density in the complex plane , 1996, cond-mat/9606173.

[11]  H. Sommers,et al.  Chaotic scattering: the supersymmetry method for large number of channels , 1995 .

[12]  Freeman J. Dyson,et al.  The Threefold Way. Algebraic Structure of Symmetry Groups and Ensembles in Quantum Mechanics , 1962 .

[13]  Jerzy Jurkiewicz,et al.  Infinite products of large random matrices and matrix-valued diffusion , 2003 .

[14]  R. Speicher,et al.  Commutators of free random variables , 1996, funct-an/9612001.

[15]  K. Efetov Supersymmetry and theory of disordered metals , 1983 .

[16]  T. Guhr,et al.  RANDOM-MATRIX THEORIES IN QUANTUM PHYSICS : COMMON CONCEPTS , 1997, cond-mat/9707301.

[17]  Maciej A. Nowak,et al.  Non-hermitian random matrix models , 1996, cond-mat/9612240.

[18]  A. Edelman The Probability that a Random Real Gaussian Matrix haskReal Eigenvalues, Related Distributions, and the Circular Law , 1997 .

[19]  F. Dyson Statistical Theory of the Energy Levels of Complex Systems. I , 1962 .

[20]  H. Sommers,et al.  Statistics of complex levels of random matrices for decaying systems , 1992 .

[21]  G. Hooft A Planar Diagram Theory for Strong Interactions , 1974 .

[22]  M. Nowak,et al.  Green's functions in non-hermitian random matrix models☆ , 1999, cond-mat/9909085.

[23]  G. Akemann,et al.  Integrable Structure of Ginibre’s Ensemble of Real Random Matrices and a Pfaffian Integration Theorem , 2007, math-ph/0703019.

[24]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[25]  J. Osborn Universal results from an alternate random-matrix model for QCD with a baryon chemical potential. , 2004, Physical review letters.

[26]  Y. Fyodorov,et al.  Statistics of resonance poles, phase shifts and time delays in quantum chaotic scattering: Random matrix approach for systems with broken time-reversal invariance , 1997 .

[27]  A. Zee,et al.  Renormalizing rectangles and other topics in random matrix theory , 1996, cond-mat/9609190.

[28]  Alexandru Nica,et al.  Free random variables , 1992 .

[29]  A. Zee,et al.  Non-hermitian random matrix theory: Method of hermitian reduction , 1997 .

[30]  J. Ginibre Statistical Ensembles of Complex, Quaternion, and Real Matrices , 1965 .

[31]  Z. Burda,et al.  Signal and Noise in Correlation Matrix , 2003, cond-mat/0305627.

[32]  F. Dyson A Brownian‐Motion Model for the Eigenvalues of a Random Matrix , 1962 .

[33]  L. Pastur On the spectrum of random matrices , 1972 .

[34]  B. Swart,et al.  Quantitative Finance , 2006, Metals and Energy Finance.