Photonic switching fabrics

The strengths and limitations of the photonic technology are reviewed, beginning with the temporal bandwidth limitations of photonic devices and then focusing on spatial bandwidth, commonly referred to as the parallelism of optics, and how it can be used in photonic fabrics. Some of the proposed photonic switching fabrics that are based on guided-wave devices are discussed, comprising switching fabrics based on space channels, using directional couplers and optical amplifiers, and those based on time channels. The latter include active reconfigurable fabrics based on TDM, time-slot interchangers, and universal time slots, in addition to passive shared media fabrics. Some of the switching fabrics that have been proposed using wavelength channels are outlined, and multidimensional fabrics are briefly reviewed. Photonic switching fabrics based on free-space devices are described, covering free-space relational switching fabrics, the basic hardware required for digital free-space optical fabrics, and digital free-space switching fabrics.<<ETX>>

[1]  H. M. Gibbs,et al.  Conditions and Limitations in Intrinsic Optical Bistability , 1981 .

[2]  P. W. Smith On the role of photonic switching in future communications systems , 1987, IEEE Circuits and Devices Magazine.

[3]  R. Spanke,et al.  Architectures for large nonblocking optical space switches , 1986 .

[4]  M. Skov Implementation of physical and media access protocols for high-speed networks , 1989, IEEE Communications Magazine.

[5]  S D Smith,et al.  Optical bistability, photonic logic, and optical computation. , 1986, Applied optics.

[6]  M. M. Downs,et al.  Optical considerations in the design of digital optical computers , 1988 .

[7]  Shuntaro Yamazaki,et al.  A coherent photonic wavelength-division switching system for broad-band networks , 1988 .

[8]  P. W. Smith,et al.  On the physical limits of digital optical switching and logic elements , 1982, The Bell System Technical Journal.

[9]  A.A. Sawchuk,et al.  Digital optical computing , 1984, Proceedings of the IEEE.

[10]  Erhard Klotz,et al.  Coherent Optical Generation and Inspection of Two-dimensional Periodic Structures , 1977 .

[11]  Paul R. Prucnal,et al.  A new direction in photonic switching , 1988, International Conference on Innovative Computing and Cloud Computing.

[12]  J. Goodman,et al.  Fiber-Optic Crossbar Switch With Broadcast Capability , 1988 .

[13]  C. Burrus,et al.  Novel hybrid optically bistable switch: The quantum well self‐electro‐optic effect device , 1984 .

[14]  C. Burrus,et al.  The quantum well self-electrooptic effect device: Optoelectronic bistability and oscillation, and self-linearized modulation , 1985 .

[15]  Paul R. Prucnal,et al.  Spread spectrum fiber-optic local area network using optical processing , 1986 .

[16]  Cauligi S. Raghavendra,et al.  Rearrangeability of multistage shuffle/exchange networks , 1988, IEEE Trans. Commun..

[17]  H. Scott Hinton,et al.  Photonic switching technology applications , 1987, AT&T Technical Journal.

[18]  J W Goodman,et al.  Fully parallel, high-speed incoherent optical method for performing discrete Fourier transforms. , 1978, Optics letters.

[19]  R. Thompson,et al.  An experimental photonic time-slot interchanger using optical fibers as reentrant delay-line memories , 1987 .

[20]  Cauligi S. Raghavendra,et al.  Optical Crossbar Networks , 1987, Computer.

[21]  A. Gossard,et al.  GaAs-AlAs monolithic microresonater arrays , 1987 .

[22]  A. Himeno,et al.  4 × 4 optical-gate matrix switch , 1985, Journal of Lightwave Technology.

[23]  J Jahns,et al.  Crossover networks and their optical implementation. , 1988, Applied optics.

[24]  S. Suzuki,et al.  Photonic Time-Division Switching Technology , 1988 .

[25]  Armand R. Tanguay Materials requirements for optical processing and computing devices , 1985 .

[26]  M. E. Prise,et al.  Free-space optical interconnection scheme. , 1990, Applied optics.

[27]  K. Ito,et al.  Fiber-optic local area passive network using burst TDMA scheme , 1985 .

[28]  H. Scott Hinton,et al.  Architectural considerations for photonic switching networks , 1988, IEEE J. Sel. Areas Commun..

[29]  Harold S. Stone,et al.  Parallel Processing with the Perfect Shuffle , 1971, IEEE Transactions on Computers.

[30]  L. Stulz,et al.  FDM-FSK star network with a tunable optical filter demultiplexer , 1987 .

[31]  David A. B. Miller,et al.  Integrated quantum well self-electro-optic effect device: 2 × 2 array of optically bistable switches , 1986 .

[32]  Tse-Yun Feng,et al.  On a Class of Multistage Interconnection Networks , 1980, IEEE Transactions on Computers.

[33]  R. Pease,et al.  High-performance heat sinking for VLSI , 1981, IEEE Electron Device Letters.

[34]  M. P. Vecchi,et al.  Demonstration of fast wavelength tuning for a high performance packet switch , 1988 .

[35]  Paul R. Prucnal,et al.  Ultrafast All-Optical Synchronous Multiple Access Fiber Networks , 1986, IEEE J. Sel. Areas Commun..

[36]  Adel A. M. Saleh,et al.  Reflective single-mode fiber-optic passive star couplers , 1988 .

[37]  T J Cloonan,et al.  Optical design of a digital switch. , 1989, Applied optics.

[38]  Bernard Glance,et al.  WDM coherent optical star network , 1988 .

[39]  Tse-Yun Feng,et al.  The Universality of the Shuffle-Exchange Network , 1981, IEEE Transactions on Computers.

[40]  K H Brenner,et al.  Optical implementations of the perfect shuffle interconnection. , 1988, Applied optics.

[41]  J. H. English,et al.  Spatial Light Modulator and Optical Dynamic Memory Using Integrated Self Electro-optic Effect Devices , 1987 .

[42]  W Stork,et al.  Optical perfect shuffle. , 1986, Applied optics.

[43]  Jürgen Jahns,et al.  Multilevel Phase Structures For Array Generation , 1989, Photonics West - Lasers and Applications in Science and Engineering.

[44]  Lars Thylén,et al.  Strictly nonblocking 8×8 integrated optical switch matrix , 1986 .

[45]  J. L. Gimlett,et al.  Demonstration of high capacity in the LAMBDANET architecture: a multiwavelength optical network , 1987 .

[46]  H. S. Hinton,et al.  Photonic switching using directional couplers , 1987, IEEE Communications Magazine.

[47]  M. C. Rushford,et al.  Use of a single nonlinear Fabry-Perot étalon as optical logic gates , 1984 .

[48]  R. T. Ku,et al.  Low crosstalk 4 × 4 TiLiNbO 3 optical switch with permanently attached polarization maintaining fiber array , 1986 .

[49]  R A Athale,et al.  Folded perfect shuffle optical processor. , 1988, Applied optics.

[50]  R. Schmidt,et al.  Directional coupler switches, modulators, and filters using alternating Δβ techniques (Invited Paper) , 1979 .

[51]  B. Kasper,et al.  Densely spaced FDM coherent star network with optical signals confined to equally spaced frequencies , 1988 .

[52]  D. Miller,et al.  Optics for low-energy communication inside digital processors: quantum detectors, sources, and modulators as efficient impedance converters. , 1989, Optics letters.

[53]  Y Li,et al.  Compact optical generalized perfect shuffle. , 1987, Applied optics.

[54]  Gerard J. Foschini,et al.  Using spread-spectrum in a high-capacity fiber-optic local network , 1988 .

[55]  J. E. Midwinter IEE review: 'Light' electronics, myth or reality? , 1985 .

[56]  A. L. Lentine,et al.  Symmetric self-electrooptic effect device : optical set-reset latch, defferential logic gate and differential modulator/detector , 1989 .

[57]  D. R. Pape,et al.  Characteristics Of The Deformable Mirror Device For Optical Information Processing , 1983 .

[58]  Kenneth E. Batcher,et al.  Sorting networks and their applications , 1968, AFIPS Spring Joint Computing Conference.

[59]  H. Dammann,et al.  High-efficiency in-line multiple imaging by means of multiple phase holograms , 1971 .

[60]  A Huang,et al.  Optical design of programmable logic arrays. , 1988, Applied optics.

[61]  B K Jenkins,et al.  Architectural implications of a digital optical processor. , 1984, Applied optics.

[62]  Faustina Hwang,et al.  A Two-Stage Rearrangeable Broadcast Switching Network , 1985, IEEE Trans. Commun..

[63]  Thomas Edward Darcie,et al.  Subcarrier multiplexing for multiple-access lightwave networks , 1987 .

[64]  K. Kyuma,et al.  Differential optical switching at subnanowatt input power , 1989, IEEE Photonics Technology Letters.

[65]  H. S. Hinton,et al.  Symmetric self‐electro‐optic effect device: Optical set‐reset latch , 1988 .

[66]  U. Killat,et al.  Binary phase gratings for star couplers with high splitting ratio , 1982 .