Bacterial GMGTs in East African lake sediments: Their potential as palaeotemperature indicators

[1]  J. Damsté,et al.  An overview of the occurrence of ether- and ester-linked iso-diabolic acid membrane lipids in microbial cultures of the Acidobacteria: Implications for brGDGT paleoproxies for temperature and pH , 2018, Organic Geochemistry.

[2]  R. Pancost,et al.  Archaeal and bacterial H-GDGTs are abundant in peat and their relative abundance is positively correlated with temperature , 2018 .

[3]  J. Russell,et al.  Distributions of 5- and 6-methyl branched glycerol dialkyl glycerol tetraethers (brGDGTs) in East African lake sediment : Effects of temperature, pH, and new lacustrine paleotemperature calibrations , 2018 .

[4]  T. Phelps,et al.  Branched GDGT production at elevated temperatures in anaerobic soil microcosm incubations , 2018 .

[5]  R. Price,et al.  Heat Stress Dictates Microbial Lipid Composition along a Thermal Gradient in Marine Sediments , 2017, Front. Microbiol..

[6]  D. M. Gray,et al.  Introducing global peat-specific temperature and pH calibrations based on brGDGT bacterial lipids , 2017 .

[7]  J. Russell,et al.  The tropical lapse rate steepened during the Last Glacial Maximum , 2017, Science Advances.

[8]  R. Pancost,et al.  A diagnostic GDGT signature for the impact of hydrothermal activity on surface deposits at the Southwest Indian Ridge , 2016 .

[9]  J. Damsté,et al.  Spatial heterogeneity of sources of branched tetraethers in shelf systems : The geochemistry of tetraethers in the Berau River delta (Kalimantan, Indonesia) , 2016 .

[10]  Xiao-Lei Liu,et al.  Novel archaeal tetraether lipids with a cyclohexyl ring identified in Fayetteville Green Lake, NY, and other sulfidic lacustrine settings. , 2016, Rapid communications in mass spectrometry : RCM.

[11]  Stefan Schouten,et al.  The effect of improved chromatography on GDGT-based palaeoproxies , 2016 .

[12]  L. Schwark,et al.  Glycerol monoalkanediol diethers: a novel series of archaeal lipids detected in hydrothermal environments. , 2016, Rapid communications in mass spectrometry : RCM.

[13]  R. P. Lyons,et al.  A progressively wetter climate in southern East Africa over the past 1.3 million years , 2016, Nature.

[14]  D. Hodgson,et al.  Mono-, di- and trimethylated homologues of isoprenoid tetraether lipid cores in archaea and environmental samples: mass spectrometric identification and significance. , 2015, Journal of mass spectrometry : JMS.

[15]  E. Hopmans,et al.  Identification and carbon isotope composition of a novel branched GDGT isomer in lake sediments: Evidence for lacustrine branched GDGT production , 2015 .

[16]  E. Boyd,et al.  Differential temperature and pH controls on the abundance and composition of H-GDGTs in terrestrial hot springs , 2014 .

[17]  Stefan Schouten,et al.  Occurrence and abundance of 6-methyl branched glycerol dialkyl glycerol tetraethers in soils : Implications for palaeoclimate reconstruction , 2014 .

[18]  S. Wakeham,et al.  Distribution of glycerol ether lipids in the oxygen minimum zone of the Eastern Tropical North Pacific Ocean , 2014 .

[19]  E. Hopmans,et al.  In situ produced branched glycerol dialkyl glycerol tetraethers in suspended particulate matter from the Yenisei River, Eastern Siberia , 2014 .

[20]  J. Russell,et al.  Effects of temperature, pH and nutrient concentration on branched GDGT distributions in East African lakes: Implications for paleoenvironmental reconstruction , 2014 .

[21]  M. Bonnet,et al.  Disentangling the origins of branched tetraether lipids and crenarchaeol in the lower Amazon River: Implications for GDGT‐based proxies , 2013 .

[22]  E. Hopmans,et al.  Identification of novel penta- and hexamethylated branched glycerol dialkyl glycerol tetraethers in peat using HPLC-MS2, GC-MS and GC-SMB-MS , 2013 .

[23]  Stefan Schouten,et al.  The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: A review , 2013 .

[24]  J. Russell,et al.  Calibration and application of the branched GDGT temperature proxy on East African lake sediments , 2012 .

[25]  S. Jørgensen,et al.  Microbial diversity of Loki's Castle black smokers at the Arctic Mid‐Ocean Ridge , 2012, Geobiology.

[26]  Xiao-Lei Liu,et al.  Extending the known range of glycerol ether lipids in the environment: structural assignments based on tandem mass spectral fragmentation patterns. , 2012, Rapid communications in mass spectrometry : RCM.

[27]  Stefan Schouten,et al.  Distribution of tetraether lipids in the 25-ka sedimentary record of Lake Challa: extracting reliable TEX86 and MBT/CBT palaeotemperatures from an equatorial African lake , 2012 .

[28]  A. Brooks,et al.  The environmental context for the origins of modern human diversity: a synthesis of regional variability in African climate 150,000-30,000 years ago. , 2012, Journal of human evolution.

[29]  Stefan Schouten,et al.  A review of molecular organic proxies for examining modern and ancient lacustrine environments , 2011 .

[30]  J. Russell,et al.  Distributions of branched GDGTs in soils and lake sediments from western Uganda: Implications for a lacustrine paleothermometer , 2011 .

[31]  C. Knappy,et al.  The major lipid cores of the archaeon Ignisphaera aggregans: implications for the phylogeny and biosynthesis of glycerol monoalkyl glycerol tetraether isoprenoid lipids , 2011, Extremophiles.

[32]  E. Hopmans,et al.  13,16-Dimethyl Octacosanedioic Acid (iso-Diabolic Acid), a Common Membrane-Spanning Lipid of Acidobacteria Subdivisions 1 and 3 , 2011, Applied and Environmental Microbiology.

[33]  M. Eggermont,et al.  Bale Moluntains Lakes : Ecosystems under pressure of global change? , 2011 .

[34]  J. Russell,et al.  Environmental controls on branched tetraether lipid distributions in tropical East African lake sediments , 2010 .

[35]  Dirk Verschuren,et al.  The seismic-stratigraphic record of lake-level fluctuations in Lake Challa: Hydrological stability and change in equatorial East Africa over the last 140 kyr , 2010 .

[36]  G. Haug,et al.  Half-precessional dynamics of monsoon rainfall near the East African Equator , 2009, Nature.

[37]  J. S. Sinninghe Damsté,et al.  Tetraether membrane lipid distributions in water-column particulate matter and sediments: a study of 47 European lakes along a north–south transect , 2009 .

[38]  J. Chong,et al.  Rapid discrimination of archaeal tetraether lipid cores by liquid chromatography-tandem mass spectrometry , 2009, Journal of the American Society for Mass Spectrometry.

[39]  Stefan Schouten,et al.  An unusual isoprenoid tetraether lipid in marine and lacustrine sediments , 2008 .

[40]  W. Inskeep,et al.  Factors Controlling the Distribution of Archaeal Tetraethers in Terrestrial Hot Springs , 2008, Applied and Environmental Microbiology.

[41]  Stefan Schouten,et al.  Tetraether membrane lipids of Candidatus “Aciduliprofundum boonei”, a cultivated obligate thermoacidophilic euryarchaeote from deep-sea hydrothermal vents , 2007, Extremophiles.

[42]  J. Krane,et al.  Structure elucidation of C80, C81 and C82 isoprenoid tetraacids responsible for naphthenate deposition in crude oil production. , 2007, Organic & biomolecular chemistry.

[43]  Stefan Schouten,et al.  Environmental controls on bacterial tetraether membrane lipid distribution in soils , 2007 .

[44]  O. Spaargaren,et al.  Occurrence and distribution of tetraether membrane lipids in soils : Implications for the use of the TEX86 proxy and the BIT index , 2006 .

[45]  S. Levis,et al.  Last Glacial Maximum and Holocene Climate in CCSM3 , 2006 .

[46]  Stefan Schouten,et al.  Membrane lipids of mesophilic anaerobic bacteria thriving in peats have typical archaeal traits. , 2006, Environmental microbiology.

[47]  J. Sjöblom,et al.  Archaeal C80 isoprenoid tetraacids responsible for naphthenate deposition in crude oil processing. , 2006, Organic & biomolecular chemistry.

[48]  C. Romanek,et al.  Nonmarine Crenarchaeol in Nevada Hot Springs , 2004, Applied and Environmental Microbiology.

[49]  Stefan Schouten,et al.  Crenarchaeotal membrane lipids in lake sediments : a new paleotemperature proxy for continental paleoclimate reconstruction? , 2004 .

[50]  Y. Itoh,et al.  The Core Lipid Composition of the 17 Strains of Hyperthermophilic Archaea, Thermococcales , 2004 .

[51]  Stefan Schouten,et al.  Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? , 2002 .

[52]  Stefan Schouten,et al.  Widespread occurrence of structurally diverse tetraether membrane lipids: evidence for the ubiquitous presence of low-temperature relatives of hyperthermophiles. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[53]  A. Driessen,et al.  Adaptations of the archaeal cell membrane to heat stress. , 2000, Frontiers in bioscience : a journal and virtual library.

[54]  Stefan Schouten,et al.  Newly discovered non-isoprenoid glycerol dialkyl glycerol tetraether lipids in sediments , 2000 .

[55]  Stefan Schouten,et al.  Structural characterization, occurrence and fate of archaeal ether-bound acyclic and cyclic biphytanes and corresponding diols in sediments , 1998 .

[56]  H. König,et al.  A novel ether core lipid with H-shaped C80-isoprenoid hydrocarbon chain from the hyperthermophilic methanogen Methanothermus fervidus. , 1998, Biochimica et biophysica acta.