Chapter 8 In Vitro Regeneration Systems of Platycerium

The staghorn fern genus, Platycerium Desv., belongs to the family Polypodiaceae. It is an epiphytic genus of pantropical distribution, consisting of 15–18 species, cultivated worldwide because of their unique appearance (Hoshizaki 1972; Tryon and Tryon 1982; Hoshizaki and Price 1990; Hoshizaki and Moran 2001, Poremski and Biedinger 2001; Darnaedi and Praptosuwiryo 2003; Fernández and Vail 2003; Pemberton 2003). It has been stated that staghorns are the aristocrats of the cultivated ferns (Hoshizaki and Price 1990). Some Platycerium species, e.g., P. grande (Amoroso and Amoroso 2003) and P. ridleyi (Wee et al. 1992; Rodpradit 2003), are considered as endangered. These plants are distinguished from other ferns, among other characteristics, by the differentiation of the leaves into base fronds or mantle leaves and forked fertile leaves. Because of their great economic value, and their special place among ferns, these plants frequently have been used in cytological, morphological, developmental, physiological, and phylogenetic studies (e.g., Hoshizaki 1970; Nagmani and Raghavan 1983; Kwa et al. 1995a, b, Kwa et al. 1997a, 1997b; Camloh, et al. 1996, 1999; Teng and Teng 1997; Ambrožič-Dolinšek et al. 2002; Kreier and Schneider 2006; Espinosa-Matías et al. 2007; Janssen et al. 2007; Rut et al. 2008; Aspiras 2010). Platycerium species are conventionally propagated by the sexual and vegetative methods. The first method involves raising plants from spores. The vegetative method of propagation, typical of at least some species of the genus Platycerium, is the development of new plants through root bud initiation (Hoshizaki 1970; Richards et al. 1983; Hoshizaki and Moran 2001). For some staghorn ferns (e.g., P. grande), it has been established that their spores are difficult to germinate in natural conditions (Amoroso and Amoroso 2003). As shown in studies of in vitro culture of spores, the duration of the process from spore to sporophyte can vary

[1]  S. Espinosa-Matías,et al.  Gametophyte morphology of Platycerium andinum Baker and Platycerium wandae Racif. , 2010, Micron.

[2]  R. A. Aspiras,et al.  Sporophyte and gametophyte development of Platycerium coronarium (Koenig) Desv. and P. grande (Fee) C. Presl. (Polypodiaceae) through in vitro propagation. , 2010, Saudi journal of biological sciences.

[3]  M. A. Revilla,et al.  Sporophyte induction studies in ferns in vitro , 2009, Euphytica.

[4]  L. Soare In Vitro Development of Gametophyte and Sporophyte in Several Fern Species , 2008 .

[5]  H. Schneider,et al.  Origin and diversification of African ferns with special emphasis on Polypodiaceae , 2007, Brittonia.

[6]  Z. Miszalski,et al.  Crassulacean acid metabolism in the epiphytic fern Platycerium bifurcatum , 2008 .

[7]  E. F. George,et al.  The Anatomy and Morphology of Tissue Cultured Plants , 2008 .

[8]  E. F. George,et al.  Micropropagation: Uses and Methods , 2008 .

[9]  S. Hegde,et al.  Callus culture and an unconventional pattern of sporophyte regeneration in Drynaria quercifolia—A medicinal fern , 2006, In Vitro Cellular & Developmental Biology - Plant.

[10]  G. C. Phillips In vitro morphogenesis in plants-recent advances , 2004, In Vitro Cellular & Developmental Biology - Plant.

[11]  A. Slater,et al.  Efficient induction of apospory and apogamy in vitro in silver fern (Pityrogramma calomelanos L.) , 2006, Plant Cell Reports.

[12]  H. Schneider Phylogeny and biogeography of the staghorn fern genus Platycerium (Polypodiaceae, Polypodiidae). , 2006, American journal of botany.

[13]  J. D. Silva,et al.  In vitro culture of the fern Platycerium bifurcatum as a tool for developmental and physiological studies. , 2006 .

[14]  M. Furmanowa,et al.  Somatic embryogenesis and in vitro culture of Huperzia selago shoots as a potential source of huperzine A , 2005 .

[15]  M. A. Revilla,et al.  In vitro culture of ornamental ferns , 2003, Plant Cell, Tissue and Organ Culture.

[16]  R. Sánchez-Tamés,et al.  In vitro organogenesis of Polypodium cambricum , 1999, Plant Cell, Tissue and Organ Culture.

[17]  R. Sánchez-Tamés,et al.  Biological and nutritional aspects involved in fern multiplication , 1999, Plant Cell, Tissue and Organ Culture.

[18]  Y. Wee,et al.  Ribulose-1,5-bisphosphate carboxylase and phosphoenolpyruvate carboxylase activities of photoautotrophic callus of Platycerium coronarium (Koenig ex O.F. Muell.) Desv. under CO2 enrichment , 1997, Plant Cell, Tissue and Organ Culture.

[19]  H. Fernández,et al.  Micropropagation and phase change in Blechnum spicant and Pteris ensiformis , 1996, Plant Cell, Tissue and Organ Culture.

[20]  Y. Wee,et al.  Role of ethylene in the production of sporophytes from Platycerium coronarium (Koenig) desv. frond and rhizome pieces cultured in Vitro , 1995, Journal of Plant Growth Regulation.

[21]  T. Lim,et al.  IAA-induced apogamy in Platycerium coronarium (Koenig) Desv. gametophytes cultured in vitro , 1995, Plant Cell Reports.

[22]  T. Lim,et al.  Morphogenetic plasticity of callus reinitiated from cell suspension cultures of the fern Platycerium coronarium , 2004, Plant Cell, Tissue and Organ Culture.

[23]  R. Pemberton The Common Staghorn Fern, Platycerium bifurcatum, Naturalizes in Southern Florida , 2003 .

[24]  R. Fernández New Records for Platycerium andinum Baker in Peru , 2003 .

[25]  V. Amoroso,et al.  Plantlet Production of the Philippine Giant Staghorn Fern [Platycerium Grande (Fee) C. Presl] Through Spore Culture , 2003 .

[26]  B. Bohanec,et al.  Apospory in leaf culture of staghorn fern (Platycerium bifurcatum) , 2002, Plant Cell Reports.

[27]  S. Porembski,et al.  Epiphytic Ferns for Sale: Influence of Commercial Plant Collection on the Frequency of Platycerium stemaria (Polypodiaceae) in Coconut Plantations on the Southeastern Ivory Coast , 2001 .

[28]  Atmane,et al.  Histological analysis of indirect somatic embryogenesis in the Marsh clubmoss Lycopodiella inundata (L.) Holub (Pteridophytes). , 2000, Plant Science.

[29]  W. Teng,et al.  The impact of a pulse treatment of penicillin-G and streptomycin sulfate on sporophyte regeneration of Platycerium bifurcatum , 2000, Plant Cell Reports.

[30]  M. Sugiyama Genetic analysis of plant morphogenesis in vitro. , 2000, International review of cytology.

[31]  J. Zel,et al.  Jasmonic Acid Stimulates Development of Rhizoids and Shoots in Fern Leaf Culture , 1999 .

[32]  W. Teng Activated charcoal affects morphogenesis and enhances sporophyte regeneration during leaf cell suspension culture of Platycerium bifurcatum , 1997, Plant Cell Reports.

[33]  W. Teng,et al.  In vitro regeneration patterns of Platycerium bifurcatum leaf cell suspension culture , 1997, Plant Cell Reports.

[34]  M. Camloh,et al.  GAMETOPHYTIC AND SPOROPHYTIC REGENERATION FROM BUD SCALES OF THE FERN PLATYCERIUM BIFURCATUM (CAV.) C.CHR. IN VITRO , 1997 .

[35]  J. Zel,et al.  Jasmonic acid promotes division of fern protoplasts, elongation of rhizoids and early development of gametophytes , 1996 .

[36]  T. Lim,et al.  Establishment and physiological analyses of photoautotrophic callus cultures of the fern Platycerium coronarium (Koenig) Desv. under CO2 enrichmen , 1995 .

[37]  J. Rode,et al.  Plant regeneration from leaf explants of the fern Platycerium bifurcatum in vitro , 1994 .

[38]  Y. Wee,et al.  Production of sporophytes from Platycerium coronarium and P. ridleyi Frond Strips and Rhizome Pieces Cultured In Vitro , 1992 .

[39]  H. Higuchi,et al.  A possible propagation system of Nephrolepis, Asplenium, Pteris, Adiantum and Rumohra (Arachniodes) through tissue culture , 1992 .

[40]  M. Camloh,et al.  PLATYCERIUM BIFURCATUM - ADVENTITIOUS BUD AND ROOT FORMATION WITHOUT GROWTH REGULATORS IN VITRO , 1991 .

[41]  E. Jámbor-Benczúr,et al.  In vitro propagation of Philodendron tuxtlanum Bunting with benzylaminopurine. , 1990 .

[42]  Shigetoshi Suzuki,et al.  In vitro propagation of Nephrolepis cordifolia Prsel , 1987 .

[43]  A. Hirsch,et al.  STRUCTURAL INVESTIGATIONS OF ASEXUAL REPRODUCTION IN NEPHROLEPIS EXALTATA AND PLATYCERIUM BIFURCATUM , 1983 .

[44]  V. Raghavan,et al.  Origin of the Rhizoid and Protonemal Cell During Germination of Spores of Drymoglossum, Platycerium, and Pyrrosia (Polypodiaceae) , 1983, Botanical Gazette.

[45]  R. Holttum,et al.  Ferns and Allied Plants with Special Reference to Tropical America , 1982 .

[46]  Ron C. Cooke Homogenization as an Aid in Tissue Culture Propagation of Platycerium and Davallia1 , 1979, HortScience.

[47]  T. Sheehan,et al.  In Vitro Propagation of Platycerium stemaria (Beauvois) Desv.1 , 1978, HortScience.

[48]  R. Moran,et al.  Fern Grower's Manual , 1975 .

[49]  B. J. Hoshizaki Morphology and Phylogeny of Platcerium Species , 1972 .

[50]  B. J. Hoshizaki The Rhizome Scales of Platycerium , 1970 .

[51]  R. Miller,et al.  Nutrient requirements of suspension cultures of soybean root cells. , 1968, Experimental cell research.

[52]  F. Skoog,et al.  Organic Growth Factor Requirements of Tobacco Tissue Cultures , 1965 .

[53]  F. Skoog,et al.  A revised medium for the growth and bioassay with tobacco tissue culture , 1962 .