Leakage reduction in fast superconducting qubit gates via optimal control

Reaching high-speed, high-fidelity qubit operations requires precise control over the shape of the underlying pulses. For weakly anharmonic systems, such as superconducting transmon qubits, short gates lead to leakage to states outside of the computational subspace. Control pulses designed with open-loop optimal control may reduce such leakage. However, model inaccuracies can severely limit the usability of such pulses. We implemented a closed-loop optimization that simultaneously adapts all control parameters based on measurements of a cost function built from Clifford gates. We directly optimize the amplitude and phase of each sample point of the digitized control pulse. We thereby fully exploit the capabilities of the pulse generation electronics and create a 4.16 ns single-qubit pulse with 99.76 % fidelity and 0.044 % leakage. This is a sevenfold reduction of the leakage rate and a threefold reduction in standard errors of the best DRAG pulse we have calibrated at such short durations on the same system.

[1]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[2]  J. Nocedal Updating Quasi-Newton Matrices With Limited Storage , 1980 .

[3]  Burkhard Luy,et al.  Pattern pulses: design of arbitrary excitation profiles as a function of pulse amplitude and offset. , 2005, Journal of magnetic resonance.

[4]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.

[5]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.

[6]  W. Neuhauser,et al.  Error-resistant Single Qubit Gates with Trapped Ions , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[7]  V. Bergholm,et al.  Optimal control of coupled Josephson qubits , 2005, quant-ph/0504202.

[8]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[9]  Alexandre Blais,et al.  Quantum information processing with circuit quantum electrodynamics , 2007 .

[10]  N. Timoney,et al.  Error-resistant Single Qubit Gates with Trapped Ions , 2007 .

[11]  J M Gambetta,et al.  Simple pulses for elimination of leakage in weakly nonlinear qubits. , 2009, Physical review letters.

[12]  Y Zhang,et al.  Singular extremals for the time-optimal control of dissipative spin 1/2 particles. , 2010, Physical review letters.

[13]  Robin Blume-Kohout,et al.  Gate fidelity fluctuations and quantum process invariants , 2009, 0910.1315.

[14]  Joseph Emerson,et al.  Scalable and robust randomized benchmarking of quantum processes. , 2010, Physical review letters.

[15]  Jay M. Gambetta,et al.  Characterizing Quantum Gates via Randomized Benchmarking , 2011, 1109.6887.

[16]  Amr Fahmy,et al.  Control aspects of quantum computing using pure and mixed states , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[17]  Austin G. Fowler,et al.  Coping with qubit leakage in topological codes , 2013, 1308.6642.

[18]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[19]  Yasunobu Nakamura,et al.  Improving quantum gate fidelities by using a qubit to measure microwave pulse distortions. , 2012, Physical review letters.

[20]  F. K. Wilhelm,et al.  Single-qubit gates in frequency-crowded transmon systems , 2013, 1306.2279.

[21]  Christiane P Koch,et al.  Optimal strategies for estimating the average fidelity of quantum gates. , 2013, Physical review letters.

[22]  M. Hastings,et al.  Gate count estimates for performing quantum chemistry on small quantum computers , 2013, 1312.1695.

[23]  D J Egger,et al.  Adaptive hybrid optimal quantum control for imprecisely characterized systems. , 2014, Physical review letters.

[24]  A N Cleland,et al.  Optimal quantum control using randomized benchmarking. , 2014, Physical review letters.

[25]  L. DiCarlo,et al.  Mitigating information leakage in a crowded spectrum of weakly anharmonic qubits , 2014, 1405.0450.

[26]  Christiane P. Koch,et al.  Arbitrary quantum-state preparation of a harmonic oscillator via optimal control , 2014, 1406.6572.

[27]  M. Hastings,et al.  Progress towards practical quantum variational algorithms , 2015, 1507.08969.

[28]  Frank K. Wilhelm,et al.  Ju l 2 01 5 Gradient optimization of analytic controls : the route to high accuracy quantum optimal control , 2022 .

[29]  Stefano Poletto,et al.  Interacting two-level defects as sources of fluctuating high-frequency noise in superconducting circuits , 2015, 1503.01637.

[30]  U. Boscain,et al.  THE EUROPEAN PHYSICAL JOURNAL D Training Schrödinger ’ s cat : quantum optimal control Strategic report on current status , visions and goals for research in Europe , 2015 .

[31]  Andrew W. Cross,et al.  Leakage suppression in the toric code , 2014, 2015 IEEE International Symposium on Information Theory (ISIT).

[32]  Peter Maunz,et al.  Error compensation of single-qubit gates in a surface-electrode ion trap using composite pulses , 2015, 1504.01440.

[33]  Christiane P. Koch,et al.  Training Schrödinger’s cat: quantum optimal control , 2015, 1508.00442.

[34]  Yuan Yu,et al.  TensorFlow: A system for large-scale machine learning , 2016, OSDI.

[35]  J. Gambetta,et al.  Procedure for systematically tuning up cross-talk in the cross-resonance gate , 2016, 1603.04821.

[36]  M. A. Rol,et al.  Restless Tuneup of High-Fidelity Qubit Gates , 2016, 1611.04815.

[37]  Jay M. Gambetta,et al.  Universal Gate for Fixed-Frequency Qubits via a Tunable Bus , 2016, 1604.03076.

[38]  Zijun Chen,et al.  Measuring and Suppressing Quantum State Leakage in a Superconducting Qubit. , 2015, Physical review letters.

[39]  Liang Jiang,et al.  Implementing a universal gate set on a logical qubit encoded in an oscillator , 2016, Nature Communications.

[40]  G. Wendin Quantum information processing with superconducting circuits: a review , 2016, Reports on progress in physics. Physical Society.

[41]  Harry Buhrman,et al.  The European Quantum Technologies Roadmap , 2017, 1712.03773.

[42]  Stefan Filipp,et al.  Analysis of a parametrically driven exchange-type gate and a two-photon excitation gate between superconducting qubits , 2017, 1708.02090.

[43]  Daniel J. Egger,et al.  Pulsed Reset Protocol for Fixed-Frequency Superconducting Qubits , 2018, Physical Review Applied.

[44]  C. K. Andersen,et al.  Rapid High-fidelity Multiplexed Readout of Superconducting Qubits , 2018, Physical Review Applied.

[45]  Jay M. Gambetta,et al.  Quantification and characterization of leakage errors , 2017, 1704.03081.

[46]  Harry Buhrman,et al.  The quantum technologies roadmap: a European community view , 2018, New Journal of Physics.

[47]  D. Tannor,et al.  Tunable, Flexible, and Efficient Optimization of Control Pulses for Practical Qubits. , 2018, Physical review letters.

[48]  A. Blais,et al.  Fast and Unconditional All-Microwave Reset of a Superconducting Qubit. , 2018, Physical review letters.

[49]  Andrew W. Cross,et al.  Quantum optimization using variational algorithms on near-term quantum devices , 2017, Quantum Science and Technology.

[50]  John C. Platt,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[51]  Arkady Fedorov,et al.  In Situ Characterization of Qubit Control Lines: A Qubit as a Vector Network Analyzer. , 2017, Physical review letters.

[52]  P. Delsing,et al.  Decoherence benchmarking of superconducting qubits , 2019, npj Quantum Information.

[53]  Fei Yan,et al.  A quantum engineer's guide to superconducting qubits , 2019, Applied Physics Reviews.

[54]  S. Filipp,et al.  Local control theory for superconducting qubits , 2018, Physical Review A.

[55]  Ivano Tavernelli,et al.  Gate-Efficient Simulation of Molecular Eigenstates on a Quantum Computer , 2018, Physical Review Applied.

[56]  M. Weides,et al.  Correlating Decoherence in Transmon Qubits: Low Frequency Noise by Single Fluctuators. , 2019, Physical review letters.

[57]  Clemens Müller,et al.  Towards understanding two-level-systems in amorphous solids: insights from quantum circuits , 2017, Reports on progress in physics. Physical Society.

[58]  M. A. Rol,et al.  Time-domain characterization and correction of on-chip distortion of control pulses in a quantum processor , 2019, Applied Physics Letters.

[59]  G. Carleo,et al.  Precise measurement of quantum observables with neural-network estimators , 2019, Physical Review Research.