High spatial resolution equilibrium reconstruction

The extension of the EFIT equilibrium reconstruction code to fine spatial-grid resolutions is discussed. The residue in the force-balance relation of the Grad?Shafranov (G?S) equation and the convergence property of these fine spatial-grid EFIT equilibria are studied in detail. The results suggest that fine spatial-grid equilibria generally better satisfy the force-balance constraint described by the G?S equation. Finer spatial-grid equilibria have typically smaller average error in satisfying the force-balance equation than coarse-grid equilibria and those extrapolated from coarse-grid results. Analysis of the equilibrium iteration algorithm employed in EFIT reveals that the iteration process is related to the spatial feedback stabilization of the plasma with flux control at various specified locations. Thus, for a converged equilibrium, axisymmetric stability is generally expected with feedback. The iteration error decreases self-similarly in the final stage of the iteration process and is related to the least stable axisymmetric mode in the feedback-stabilized equilibrium.

[1]  J. Manickam,et al.  Numerical determination of axisymmetric toroidal magnetohydrodynamic equilibria , 1979 .

[2]  L. Lao,et al.  MHD Equilibrium Reconstruction in the DIII-D Tokamak , 2005 .

[3]  M. S. Chu,et al.  Axially symmetric magnetohydrodynamic equilibria with free-boundaries and arbitrary cross section , 1974 .

[4]  L. C. Bernard,et al.  GATO: An MHD stability code for axisymmetric plasmas with internal separatrices , 1981 .

[5]  R. Glowinski,et al.  Computing Methods in Applied Sciences and Engineering , 1974 .

[6]  L. C. Appel,et al.  Equilibrium reconstruction in the START tokamak , 2001 .

[7]  O. Sauter,et al.  Neoclassical conductivity and bootstrap current formulas for general axisymmetric equilibria and arbitrary collisionality regime , 1999 .

[8]  R. Miller,et al.  Hot particle stabilization of ballooning modes in tokamaks , 1987 .

[9]  L. L. Lao,et al.  Equilibrium Reconstruction in EAST Tokamak , 2009 .

[10]  L. Lao,et al.  Reconstruction of current profile parameters and plasma shapes in tokamaks , 1985 .

[11]  A. Pletzer,et al.  Theory of perturbed equilibria for solving the Grad–Shafranov equation , 1999 .

[12]  F. W. McClain,et al.  Numerical parameter study of stability against resistive axisymmetric modes for doublets , 1978, Journal of Plasma Physics.

[13]  Normal mode approach to modelling of feedback stabilization of the resistive wall mode , 2003 .

[14]  J. Blum Numerical simulation and optimal control in plasma physics , 1989 .

[15]  R. Miller,et al.  Wall stabilization of axisymmetric modes in noncircular tokamak plasmas , 1978 .

[16]  L. Lao,et al.  Equilibrium analysis of iron core tokamaks using a full domain method , 1992 .

[17]  A. Bondeson,et al.  The CHEASE code for toroidal MHD equilibria , 1996 .

[18]  L. L. Lao,et al.  Equilibrium properties of spherical torus plasmas in NSTX , 2001 .

[19]  P. J. Mc Carthy,et al.  Analytical solutions to the Grad–Shafranov equation for tokamak equilibrium with dissimilar source functions , 1999 .

[20]  L. L. Lao,et al.  Equilibrium and global MHD stability study of KSTAR high beta plasmas under passive and active mode control , 2010 .

[21]  L. L. Lao,et al.  Equilibrium analysis of current profiles in tokamaks , 1990 .