Oriented Triplet Markov fields for hyperspectral image segmentation

Hyperspectral image processing benefits greatly from using spatial information. Markov field modeling is a well-known statistical model class for considering spatial relationships between sites of an image. Often, the model restricts to Hidden Markov Field, therefore cannot handle non-stationarities in the images. This paper presents a Triplet Markov Field model for hyperspectral image segmentation, allowing the joint retrieving of image classes and local orientations. Segmentation results on synthetic data validate the methods, and results on real astronomical data are presented.

[1]  Josiane Zerubia,et al.  Texture feature analysis using a gauss-Markov model in hyperspectral image classification , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[2]  Olivier J. J. Michel,et al.  Nonparametric Bayesian Extraction of Object Configurations in Massive Data , 2015, IEEE Transactions on Signal Processing.

[3]  James E. Fowler,et al.  Hyperspectral Image Classification Using Gaussian Mixture Models and Markov Random Fields , 2014, IEEE Geoscience and Remote Sensing Letters.

[4]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[5]  Tomaso Poggio,et al.  Probabilistic Solution of Ill-Posed Problems in Computational Vision , 1987 .

[6]  G. Celeux,et al.  A stochastic approximation type EM algorithm for the mixture problem , 1992 .

[7]  Wojciech Pieczynski,et al.  Unsupervised image segmentation using triplet Markov fields , 2005, Comput. Vis. Image Underst..

[8]  José M. F. Moura,et al.  Hyperspectral imagery: Clutter adaptation in anomaly detection , 2000, IEEE Trans. Inf. Theory.

[9]  Emmanuel Monfrini,et al.  Estimation de mélanges généralisés dans les arbres de Markov cachés, application à la segmentation des images de cartons d'orgue de barbarie , 2005 .

[10]  Hassan Ghassemian,et al.  Linear Feature Extraction for Hyperspectral Images Based on Information Theoretic Learning , 2013, IEEE Geoscience and Remote Sensing Letters.

[11]  Antonio J. Plaza,et al.  This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 1 Spectral–Spatial Hyperspectral Image Segmentation Using S , 2022 .

[12]  S Matteoli,et al.  A tutorial overview of anomaly detection in hyperspectral images , 2010, IEEE Aerospace and Electronic Systems Magazine.

[13]  Peijun Du,et al.  Spectral–Spatial Classification for Hyperspectral Data Using Rotation Forests With Local Feature Extraction and Markov Random Fields , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Abdelwaheb Marzouki,et al.  Estimation of generalized mixtures and its application in image segmentation , 1997, IEEE Trans. Image Process..

[15]  José G. Dias,et al.  An empirical comparison of EM, SEM and MCMC performance for problematic Gaussian mixture likelihoods , 2004, Stat. Comput..

[16]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[17]  Jon Atli Benediktsson,et al.  Adaptive Markov Random Fields for Joint Unmixing and Segmentation of Hyperspectral Images , 2013, IEEE Transactions on Image Processing.

[18]  W. Pieczynski,et al.  Pairwise Markov random fields and segmentation of textured images , 2000 .

[19]  P. Weilbacher,et al.  The MUSE 3D view of the Hubble Deep Field South , 2014, 1411.7667.

[20]  Jon Atli Benediktsson,et al.  Advances in Spectral-Spatial Classification of Hyperspectral Images , 2013, Proceedings of the IEEE.

[21]  W. Schaap,et al.  The Cosmic Web: Geometric Analysis , 2007, 0708.1441.

[22]  Wojciech Pieczynski,et al.  Parameter Estimation in Hidden Fuzzy Markov Random Fields and Image Segmentation , 1997, CVGIP Graph. Model. Image Process..

[23]  Haluk Derin,et al.  Modeling and Segmentation of Noisy and Textured Images Using Gibbs Random Fields , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .