Robust Airborne 3D Visual Simultaneous Localization and Mapping with Observability and Consistency Analysis

This paper aims to present a robust airborne 3D Visual Simultaneous Localization and Mapping (VSLAM) solution based on a stereovision system. We propose three innovative contributions to the Airborne VSLAM. The first one is the development of an alternative data fusion nonlinear H ∞ filtering scheme. This scheme is based on 3D vision observation model and avoids issues linked with the classical Extended Kalman Filtering (EKF) techniques such as the linearization errors, the initialization problem and noise statistics assumptions. The second contribution consists of a consistency and observability analysis for the Airborne VSLAM. The third contribution is a new approach to map management, based on the k-nearest landmark concept, and allowing efficient loop closure detection and map building. This approach reduces considerably the complexity of our Airborne VSLAM algorithm, which becomes independent of the map landmark number. Simulation results show the efficiency of the proposed Airborne VSLAM solution for which comparisons with other techniques are favourable.

[1]  Andrew J. Davison,et al.  Mobile Robot Navigation Using Active Vision , 1998 .

[2]  S. Sukkarieh,et al.  Observability analysis and active control for airborne SLAM , 2008, IEEE Transactions on Aerospace and Electronic Systems.

[3]  Eduardo Mario Nebot,et al.  Optimization of the simultaneous localization and map-building algorithm for real-time implementation , 2001, IEEE Trans. Robotics Autom..

[4]  Ml. Benmessaoud,et al.  Single-Camera EKF-vSLAM , 2008 .

[5]  Ingemar J. Cox,et al.  Autonomous Robot Vehicles , 1990, Springer New York.

[6]  Wolfram Burgard,et al.  Improving Grid-based SLAM with Rao-Blackwellized Particle Filters by Adaptive Proposals and Selective Resampling , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[7]  Alfred M. Bruckstein,et al.  Causal Camera Motion Estimation by Condensation and Robust Statistics Distance Measures , 2004, ECCV.

[8]  Gamini Dissanayake,et al.  Convergence and Consistency Analysis for Extended Kalman Filter Based SLAM , 2007, IEEE Transactions on Robotics.

[9]  Teresa A. Vidal-Calleja,et al.  On the Observability of Bearing-only SLAM , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[10]  Raja Chatila,et al.  Stochastic multisensory data fusion for mobile robot location and environment modeling , 1989 .

[11]  Eduardo Mario Nebot,et al.  Consistency of the EKF-SLAM Algorithm , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[12]  José A. Castellanos,et al.  Robocentric map joining: Improving the consistency of EKF-SLAM , 2007, Robotics Auton. Syst..

[13]  Andrew J. Davison,et al.  Real-time simultaneous localisation and mapping with a single camera , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[14]  Hassan Hajjdiab,et al.  Vision-based multi-robot simultaneous localization and mapping , 2004, First Canadian Conference on Computer and Robot Vision, 2004. Proceedings..

[15]  Salah Sukkarieh,et al.  Building a Robust Implementation of Bearing‐only Inertial SLAM for a UAV , 2007, J. Field Robotics.

[16]  John J. Leonard,et al.  Cooperative concurrent mapping and localization , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[17]  J. S. Ortega Towards visual localization, mapping and moving objects tracking by a mobile robot : a geometric and probabilistic approach , 2007 .

[18]  SungJoon Kim Efficient simultaneous localization and mapping algorithms using submap networks , 2004 .

[19]  Uri Shaked,et al.  H∞ nonlinear filtering of discrete-time processes , 1995, IEEE Trans. Signal Process..

[20]  J. A. Castellanos,et al.  Limits to the consistency of EKF-based SLAM , 2004 .

[21]  Ian R. Petersen,et al.  Robust Kalman Filtering for Signals and Systems with Large Uncertainties , 1999 .

[22]  Stefan B. Williams,et al.  Map Management for Efficient Simultaneous Localization and Mapping (SLAM) , 2002, Auton. Robots.

[23]  David W. Murray,et al.  Mobile Robot Localisation Using Active Vision , 1998, ECCV.

[24]  Garry A. Einicke,et al.  Robust extended Kalman filtering , 1999, IEEE Trans. Signal Process..

[25]  Hugh F. Durrant-Whyte,et al.  A solution to the simultaneous localization and map building (SLAM) problem , 2001, IEEE Trans. Robotics Autom..

[26]  Tamer Başar,et al.  H1-Optimal Control and Related Minimax Design Problems , 1995 .

[27]  T. Basar,et al.  H∞-0ptimal Control and Related Minimax Design Problems: A Dynamic Game Approach , 1996, IEEE Trans. Autom. Control..

[28]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[29]  Peter C. Cheeseman,et al.  Estimating uncertain spatial relationships in robotics , 1986, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[30]  Wolfram Burgard,et al.  A system for volumetric robotic mapping of abandoned mines , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[31]  Sebastian Thrun,et al.  Results for outdoor-SLAM using sparse extended information filters , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[32]  Danica Kragic,et al.  A framework for vision based bearing only 3D SLAM , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[33]  Jeffrey K. Uhlmann,et al.  A counter example to the theory of simultaneous localization and map building , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[34]  Tamer Basar,et al.  H∞-Optimal Control and Related , 1991 .

[35]  David W. Murray,et al.  Simultaneous Localization and Map-Building Using Active Vision , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  Peter Cheeseman,et al.  On the Representation and Estimation of Spatial Uncertainty , 1986 .

[37]  Sebastian Thrun,et al.  FastSLAM 2.0: An Improved Particle Filtering Algorithm for Simultaneous Localization and Mapping that Provably Converges , 2003, IJCAI.

[38]  Stefan B. Williams,et al.  Towards terrain-aided navigation for underwater robotics , 2001, Adv. Robotics.