Latent Data Association: Bayesian Model Selection for Multi-target Tracking

We propose a novel parametrization of the data association problem for multi-target tracking. In our formulation, the number of targets is implicitly inferred together with the data association, effectively solving data association and model selection as a single inference problem. The novel formulation allows us to interpret data association and tracking as a single Switching Linear Dynamical System (SLDS). We compute an approximate posterior solution to this problem using a dynamic programming/message passing technique. This inference-based approach allows us to incorporate richer probabilistic models into the tracking system. In particular, we incorporate inference over inliers/outliers and track termination times into the system. We evaluate our approach on publicly available datasets and demonstrate results competitive with, and in some cases exceeding the state of the art.

[1]  Y. Bar-Shalom,et al.  Tracking in a cluttered environment with probabilistic data association , 1975, Autom..

[2]  Donald Reid An algorithm for tracking multiple targets , 1978 .

[3]  Yaakov Bar-Shalom,et al.  Sonar tracking of multiple targets using joint probabilistic data association , 1983 .

[4]  Kevin Murphy,et al.  Switching Kalman Filters , 1998 .

[5]  Wolfram Burgard,et al.  Tracking multiple moving targets with a mobile robot using particle filters and statistical data association , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[6]  Frank Dellaert,et al.  An MCMC-Based Particle Filter for Tracking Multiple Interacting Targets , 2004, ECCV.

[7]  Songhwai Oh,et al.  Markov chain Monte Carlo data association for general multiple-target tracking problems , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[8]  Bernt Schiele,et al.  Pedestrian detection in crowded scenes , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[9]  A. Doucet,et al.  Sequential Monte Carlo methods for multitarget filtering with random finite sets , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[10]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[11]  S. Godsill,et al.  Monte Carlo filtering for multi target tracking and data association , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[12]  James J. Little,et al.  A Linear Programming Approach for Multiple Object Tracking , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[13]  Rainer Stiefelhagen,et al.  Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics , 2008, EURASIP J. Image Video Process..

[14]  Emilio Maggio,et al.  Efficient Multitarget Visual Tracking Using Random Finite Sets , 2008, IEEE Transactions on Circuits and Systems for Video Technology.

[15]  Ramakant Nevatia,et al.  Global data association for multi-object tracking using network flows , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[16]  David A. McAllester,et al.  A discriminatively trained, multiscale, deformable part model , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  Luc Van Gool,et al.  Coupled Object Detection and Tracking from Static Cameras and Moving Vehicles , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Stefan Roth,et al.  People-tracking-by-detection and people-detection-by-tracking , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[19]  J. Ferryman,et al.  An overview of the PETS 2009 challenge , 2009 .

[20]  Konrad Schindler,et al.  Globally Optimal Multi-target Tracking on a Hexagonal Lattice , 2010, ECCV.

[21]  Ian Reid,et al.  fastHOG – a real-time GPU implementation of HOG , 2011 .

[22]  Luc Van Gool,et al.  Online Multiperson Tracking-by-Detection from a Single, Uncalibrated Camera , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Ian D. Reid,et al.  Stable multi-target tracking in real-time surveillance video , 2011, CVPR 2011.

[24]  Pascal Fua,et al.  Ieee Transactions on Pattern Analysis and Machine Intelligence 1 Multiple Object Tracking Using K-shortest Paths Optimization , 2022 .

[25]  Konrad Schindler,et al.  Multi-target tracking by continuous energy minimization , 2011, CVPR 2011.

[26]  Konrad Schindler,et al.  Discrete-continuous optimization for multi-target tracking , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[27]  Afshin Dehghan,et al.  GMCP-Tracker: Global Multi-object Tracking Using Generalized Minimum Clique Graphs , 2012, ECCV.