Nonlinear Response of the Mass-Spring Model with nonsmooth Stiffness

In this paper, we study the nonlinear response of the nonlinear mass-spring model with nonsmooth stiffness. For this purpose, we take as prototype model, a system that consists of the double-well smooth potential with an additional spring component acting on the system only for large enough displacement. We focus our study on the analysis of the homoclinic orbits for such nonlinear potential for which we observe the appearance of chaotic motion in the presence of damping effects and an external harmonic force, analyzing the crucial role of the linear spring in the dynamics of our system. The results are shown by using both the Melnikov analysis and numerical simulations. We expect our work to have implications on problems concerning the suspension of vehicles, among others.

[1]  Miguel A. F. Sanjuán,et al.  Nonlinear dynamics of the Helmholtz Oscillator , 2004 .

[2]  Reimund Neugebauer,et al.  Nonlinear Dynamics of Production Systems: RADONS:NONLIN.DYN.PROD.SY O-BK , 2005 .

[3]  Ekaterina Pavlovskaia,et al.  Low-dimensional maps for piecewise smooth oscillators , 2007 .

[4]  S. A. Robertson,et al.  NONLINEAR OSCILLATIONS, DYNAMICAL SYSTEMS, AND BIFURCATIONS OF VECTOR FIELDS (Applied Mathematical Sciences, 42) , 1984 .

[5]  P. Holmes,et al.  A nonlinear oscillator with a strange attractor , 1979, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[6]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[7]  R. Leine,et al.  Bifurcations in Nonlinear Discontinuous Systems , 2000 .

[8]  Marian Wiercigroch,et al.  Applied nonlinear dynamics and chaos of mechanical systems with discontinuities , 2000 .

[9]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[10]  M. Sanjuán,et al.  Unpredictable behavior in the Duffing oscillator: Wada basins , 2002 .

[11]  Miguel A. F. Sanjuán,et al.  Energy dissipation in a nonlinearly damped Duffing oscillator , 2001 .

[12]  G. Verros,et al.  Control and Dynamics of Quarter-Car Models With Dual-Rate Damping , 2000 .

[13]  Grzegorz Litak,et al.  Vibration of generalized double well oscillators , 2006, nlin/0610052.

[14]  P. J. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[15]  Utz von Wagner On non-linear stochastic dynamics of quarter car models , 2004 .

[16]  M. Kunze,et al.  Non-Smooth Dynamical Systems: An Overview , 2001 .

[17]  J. Sprott Chaos and time-series analysis , 2001 .

[18]  James A. Yorke,et al.  Dynamics: Numerical Explorations , 1994 .

[19]  Bernold Fiedler,et al.  Ergodic theory, analysis, and efficient simulation of dynamical systems , 2001 .

[20]  J. Miller Numerical Analysis , 1966, Nature.

[21]  Grzegorz Litak,et al.  Chaotic Vibration of a Quarter-Car Model Excited by the Road Surface Profile , 2006, nlin/0601030.

[22]  Li,et al.  Fractal basin boundaries and homoclinic orbits for periodic motion in a two-well potential. , 1985, Physical review letters.

[23]  Hamel Georg Duffing, Ingenieur: Erzwungene Schwingungen bei veränderlicher Eigenfrequenz und ihre technische Bedeutung. Sammlung Vieweg. Heft 41/42, Braunschweig 1918. VI+134 S , 1921 .