Epitaxial Growth of Aligned Semiconductor Nanowire Metamaterials for Photonic Applications

A novel class of optical metamaterials is presented consisting of high densities of aligned gallium phosphide (GaP) nanowires fabricated using metal-organic vapor phase-epitaxy. Starting from a gold island film as a catalyst for nanowire growth, a sequential combination of vapor-liquid-solid and lateral growth modes is employed to obtain a continuous tunability of the nanowire volume fraction from 7% to over 35%. By choosing different crystallographic orientations of the GaP substrate, metamaterials are designed with different nanowire orientations. The anisotropy of the nanowire building blocks results in strong optical birefringence. Polarization interferometry demonstrates a very large polarization extinction contrast of 4 × 103 combined with a sharp angular resonance which holds promise for optical sensing. Nanowire metamaterials may find applications in photonics, optoelectronics, non-linear and quantum optics, microfluidics, bio-, and gas sensing.

[1]  Jian-Gang Zhu,et al.  Magnetic tunnel junctions , 2006 .

[2]  Liam O'Faolain,et al.  Compact polarization converter in InP-based material. , 2005, Optics express.

[3]  J Gómez Rivas,et al.  Modification of the photoluminescence anisotropy of semiconductor nanowires by coupling to surface plasmon polaritons. , 2007, Optics letters.

[4]  Z. Levine,et al.  Intrinsic birefringence in calcium fluoride and barium fluoride , 2001 .

[5]  Molecular Identification by Time‐Resolved Interferometry in a Porous Silicon Film , 2001 .

[6]  E. Fred Schubert,et al.  Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection , 2007 .

[7]  Fang Qian,et al.  Nanowire electronic and optoelectronic devices , 2006 .

[8]  Vincent Fusco,et al.  Electromagnetic Metamaterials: Physics and Engineering Explorations (Engheta, N. and Ziolkowski, R.W.; 2006) [Book Review] , 2007, IEEE Antennas and Propagation Magazine.

[9]  N. Engheta,et al.  Metamaterials: Physics and Engineering Explorations , 2006 .

[10]  Wilbur Wright,et al.  Angle of Incidence , 1901, Aeronautical journal (London, England : 1897).

[11]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[12]  Xiangfeng Duan,et al.  Highly Polarized Photoluminescence and Photodetection from Single Indium Phosphide Nanowires , 2001, Science.

[13]  D. Ugarte,et al.  Aligned Carbon Nanotube Films: Production and Optical and Electronic Properties , 1995, Science.

[14]  Peidong Yang,et al.  Controlled growth of Si nanowire arrays for device integration. , 2005, Nano letters.

[15]  P. Yang Nanowire Photonics , 2007, 2007 International Nano-Optoelectronics Workshop.

[16]  Lars Samuelson,et al.  Epitaxial III-V nanowires on silicon , 2004 .

[17]  M. Ghadiri,et al.  A porous silicon-based optical interferometric biosensor. , 1997, Science.

[18]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[19]  C. A. Stover,et al.  Giant birefringent optics in multilayer polymer mirrors , 2000, Science.

[20]  W. Steen Absorption and Scattering of Light by Small Particles , 1999 .

[21]  Masaya Notomi,et al.  Superprism Phenomena in Photonic Crystals , 1998 .

[22]  H. Tong,et al.  Silicon nitride nanosieve membrane , 2004 .

[23]  J. Buriak,et al.  Chemical and Biological Applications of Porous Silicon Technology , 2000 .

[24]  V. Timoshenko,et al.  Highly sensitive recognition element based on birefringent porous silicon layers , 2001 .

[25]  O. Muskens,et al.  Giant optical birefringence in ensembles of semiconductor nanowires , 2006 .

[26]  Albert Birner,et al.  Large birefringence in two-dimensional silicon photonic crystals , 2001 .

[27]  Y. Fainman,et al.  Vapor sensor realized in an ultracompact polarization interferometer built of a freestanding porous-silicon form birefringent film , 2003, IEEE Photonics Technology Letters.

[28]  Charles M. Lieber,et al.  Coaxial silicon nanowires as solar cells and nanoelectronic power sources , 2007, Nature.

[29]  M. Fujii,et al.  Giant birefringence in anisotropically nanostructured silicon. , 2001, Optics letters.

[30]  Zahava Barkay,et al.  Ultrathin Gold Island Films on Silanized Glass. Morphology and Optical Properties , 2004 .

[31]  Y Fainman,et al.  Fabrication, modeling, and characterization of form-birefringent nanostructures. , 1995, Optics letters.

[32]  Dirk J. Broer,et al.  High‐Contrast Thin‐Film Polarizers by Photo‐Crosslinking of Smectic Guest–Host Systems , 2006 .

[33]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[34]  Peidong Yang,et al.  Nanowire dye-sensitized solar cells , 2005, Nature materials.

[35]  E. I. Givargizov Fundamental aspects of VLS growth , 1975 .

[36]  M. Kaiser,et al.  Epitaxial growth of InP nanowires on germanium , 2004, Nature materials.

[37]  E. Bakkers,et al.  Growth kinetics of heterostructured GaP-GaAs nanowires. , 2006, Journal of the American Chemical Society.