ACCELERATION OF COMPACT RADIO JETS ON SUB-PARSEC SCALES

Jets of compact radio sources are highly relativistic and Doppler boosted, making studies of their intrinsic properties difficult. Observed brightness temperatures can be used to study the intrinsic physical properties of relativistic jets, and constrain models of jet formation in the inner jet region. We aim to observationally test such inner jet models. The very long baseline interferometry (VLBI) cores of compact radio sources are optically thick at a given frequency. The distance of the core from the central engine is inversely proportional to the frequency. Under the equipartition condition between the magnetic field energy and particle energy densities, the absolute distance of the VLBI core can be predicted. We compiled the brightness temperatures of VLBI cores at various radio frequencies of 2, 8, 15, and 86 GHz. We derive the brightness temperature on sub-parsec scales in the rest frame of the compact radio sources. We find that the brightness temperature increases with increasing distance from the central engine, indicating that the intrinsic jet speed (the Lorentz factor) increases along the jet. This implies that the jets are accelerated in the (sub-)parsec regions from the central engine.

[1]  Discovery of off-axis jet structure of TeV blazar Mrk 501 with mm-VLBI , 2016, 1601.02497.

[2]  Christina Freytag,et al.  Radiative Processes In Astrophysics , 2016 .

[3]  M. Kino,et al.  HIGH-SENSITIVITY 86 GHz (3.5 mm) VLBI OBSERVATIONS OF M87: DEEP IMAGING OF THE JET BASE AT A RESOLUTION OF 10 SCHWARZSCHILD RADII , 2015, 1512.03783.

[4]  E. Ros,et al.  The stratified two-sided jet of Cygnus A. Acceleration and collimation , 2015, 1509.06250.

[5]  Technology,et al.  FIRST DETECTION OF 350 MICRON POLARIZATION FROM A RADIO-LOUD AGN , 2015, 1507.03310.

[6]  H Germany,et al.  Connection between inner jet kinematics and broadband flux variability in the BL Lac object S5 0716+714 , 2015, 1503.04218.

[7]  Y. Kovalev,et al.  Intrinsic physical conditions and structure of relativistic jets in active galactic nuclei , 2014, 1412.1992.

[8]  Intrinsic Brightness Temperatures of Compact Radio Jets as a Function of Frequency , 2014, 1412.3223.

[9]  K. Toma,et al.  Electromotive force in the Blandford–Znajek process , 2014, 1405.7437.

[10]  L. Bassani,et al.  IGR J17488–2338: a newly discovered giant radio galaxy , 2014, 1403.1400.

[11]  Masanori Nakamura,et al.  DISCOVERY OF SUB- TO SUPERLUMINAL MOTIONS IN THE M87 JET: AN IMPLICATION OF ACCELERATION FROM SUB-RELATIVISTIC TO RELATIVISTIC SPEEDS , 2013, 1311.5709.

[12]  Sang-Sung Lee INTRINSIC BRIGHTNESS TEMPERATURE OF COMPACT RADIO SOURCES AT 86GHZ , 2013, 1311.3378.

[13]  Mareki Honma,et al.  THE INNERMOST COLLIMATION STRUCTURE OF THE M87 JET DOWN TO ∼10 SCHWARZSCHILD RADII , 2013, 1308.1411.

[14]  Y. Kovalev,et al.  Single-epoch VLBI imaging study of bright active galactic nuclei at 2 GHz and 8 GHz , 2012, 1205.5559.

[15]  W. Alef,et al.  On the calibration of full-polarization 86 GHz global VLBI observations , 2012, 1203.1424.

[16]  Noriyuki Kawaguchi,et al.  An origin of the radio jet in M87 at the location of the central black hole , 2011, Nature.

[17]  Y. Lyubarsky ASYMPTOTIC STRUCTURE OF POYNTING-DOMINATED JETS , 2009, 0902.3357.

[18]  R. Blandford,et al.  Stability of relativistic jets from rotating, accreting black holes via fully three-dimensional magnetohydrodynamic simulations , 2008, 0812.1060.

[19]  Stsci,et al.  The jet of Markarian 501 from millions of Schwarzschild radii down to a few hundreds , 2008, 0807.1786.

[20]  A. Lobanov,et al.  Opacity in compact extragalactic radio sources and its effect on astrophysical and astrometric studies , 2008, 0802.2970.

[21]  M. Bremer,et al.  Superluminal non-ballistic jet swing in the quasar NRAO 150 revealed by mm-VLBI , 2007, 0710.5435.

[22]  Sang-Sung Lee,et al.  A GLOBAL 86 GHZ VLBI SURVEY OF COMPACT RADIO SOURCES , 2007, 0803.4035.

[23]  D. Harris,et al.  X-Ray Emission from Extragalactic Jets , 2006, astro-ph/0607228.

[24]  A. Eckart,et al.  Sub-Milliarcsecond Imaging of Sgr A* and M 87 , 2006, astro-ph/0607072.

[25]  M. Cohen,et al.  ACCEPTED FOR PUBLICATION IN APJ LETTERS Preprint typeset using LATEX style emulateapj v. 12/14/05 INTRINSIC BRIGHTNESS TEMPERATURES OF AGN JETS , 2006 .

[26]  M. Cohen,et al.  MOJAVE: MONITORING OF JETS IN ACTIVE GALACTIC NUCLEI WITH VLBA EXPERIMENTS. XI. SPECTRAL DISTRIBUTIONS , 2014, 1404.0014.

[27]  N. Vlahakis,et al.  Magnetic Driving of Relativistic Outflows in Active Galactic Nuclei. I. Interpretation of Parsec-Scale Accelerations , 2003, astro-ph/0310747.

[28]  A. A. Kaas,et al.  Evolution of the polarization of the optical afterglow of the γ-ray burst GRB030329 , 2003, Nature.

[29]  R. Lovelace,et al.  Relativistic Poynting Jets from Accretion Disks , 2003, astro-ph/0401481.

[30]  J. Attridge 86 GHz Very Long Baseline Polarimetry of 3C 273 and 3C 279 with the Coordinated Millimeter VLBI Array , 2001, astro-ph/0104312.

[31]  J. Benson,et al.  The Structure and Motions of the 3C 120 Radio Jet on Scales of 0.6-300 Parsecs , 2001, astro-ph/0103379.

[32]  M. Inoue,et al.  Sub-Parsec-Scale Acceleration of the Radio Jet in the Powerful Radio Galaxy NGC 6251 , 2000, astro-ph/0008173.

[33]  M. Begelman,et al.  Jet Acceleration by Tangled Magnetic Fields , 1999, astro-ph/9912429.

[34]  Marek Sikora,et al.  On Pair Content and Variability of Subparsec Jets in Quasars , 1999, astro-ph/9912335.

[35]  A. Lobanov,et al.  Spectral Evolution of the Parsec-Scale Jet in the Quasar 3C 345 , 1999 .

[36]  S. Djorgovski,et al.  The afterglow, redshift and extreme energetics of the γ-ray burst of 23 January 1999 , 1999, Nature.

[37]  W. Cotton,et al.  A Parsec-Scale Accelerating Radio Jet in the Giant Radio Galaxy NGC 315 , 1999, astro-ph/9902053.

[38]  A. Ferrari,et al.  MODELING EXTRAGALACTIC JETS , 1998 .

[39]  J. Carlstrom,et al.  50 MU as resolution VLBI images of AGN's at lambda 3 mm , 1998 .

[40]  S. Doeleman,et al.  A 3 Millimeter VLBI Continuum Source Survey , 1998 .

[41]  I. Mirabel,et al.  Microquasars in our Galaxy , 1998, Nature.

[42]  L. Gurvits,et al.  Sub-Milliarcsecond Imaging of Quasars and Active Galactic Nuclei. IV. Fine-Scale Structure , 2005, astro-ph/0505536.

[43]  J. Anton Zensus,et al.  PARSEC-SCALE JETS IN EXTRAGALACTIC RADIO SOURCES1 , 1997 .

[44]  M. Wright,et al.  A Dramatic Millimeter Wavelength Flare in the Gamma-Ray Blazar NRAO 530 , 1997 .

[45]  A. Lobanov,et al.  Variability in the Inverse-Compton X-Ray Flux from the Jet in Quasar 3C 345 , 1997 .

[46]  T. Krichbaum,et al.  Very-long-baseline radio interferometry (VLBI) observations of gamma-ray blazars: results from millimeter-VLBI observations. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[47]  I. Mirabel,et al.  A superluminal source in the Galaxy , 1994, Nature.

[48]  Alan H. Bridle,et al.  Extragalactic Radio Jets , 1984 .

[49]  R. Blandford,et al.  Hydromagnetic flows from accretion discs and the production of radio jets , 1982 .

[50]  I. Pauliny-Toth,et al.  Compact Radio Sources , 1981 .

[51]  A. Konigl Relativistic jets as X-ray and gamma-ray sources. , 1981 .

[52]  Roger D. Blandford,et al.  Relativistic jets as compact radio sources , 1979 .

[53]  R. Blandford,et al.  Electromagnetic extraction of energy from Kerr black holes , 1977 .

[54]  R. Lovelace,et al.  Dynamo model of double radio sources , 1976, Nature.

[55]  A E Rogers,et al.  Quasars Revisited: Rapid Time Variations Observed Via Very-Long-Baseline Interferometry , 1971, Science.

[56]  M. Rees,et al.  Appearance of Relativistically Expanding Radio Sources , 1966, Nature.

[57]  W. Baade,et al.  On the Identification of Radio Sources. , 1954 .