Powers of Hamiltonian paths in interval graphs

We give a simple proof that the obvious necessary conditions for a graph to contain the kth power of a Hamiltonian path are sufficient for the class of interval graphs. The proof is based on showing that a greedy algorithm tests for the existence of Hamiltonian path powers in interval graphs. We will also discuss covers by powers of paths and analogues of the Hamiltonian completion number. c © 1998 John Wiley & Sons, Inc. J Graph Theory 27: 31–38, 1998

[1]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[2]  Sheng-Lung Peng,et al.  Deferred-Query - An Efficient Approach for Problems on interval and Circular-Arc Graphs (Extended Abstract) , 1993, WADS.

[3]  Vasek Chvátal,et al.  Tough graphs and hamiltonian circuits , 1973, Discret. Math..

[4]  Wei-Kuan Shih,et al.  An O(n² log n) Algorithm for the Hamiltonian Cycle Problem on Circular-Arc Graphs , 1992, SIAM J. Comput..

[5]  J. Mark Keil Finding Hamiltonian Circuits in Interval Graphs , 1985, Inf. Process. Lett..

[6]  Jitender S. Deogun,et al.  1-Tough cocomparability graphs are hamiltonian , 1997, Discret. Math..

[7]  Maurizio A. Bonuccelli,et al.  Minimum Node Disjoint Path Covering for Circular-Arc Graphs , 1979, Inf. Process. Lett..

[8]  Peter Damaschke,et al.  Paths in interval graphs and circular arc graphs , 1993, Discret. Math..

[9]  Edward F. Schmeichel,et al.  Toughness and Triangle-Free Graphs , 1995, J. Comb. Theory, Ser. B.

[10]  D. Kratsch,et al.  Finding Hamiltonian paths in cocomparability graphs using the bump number algorithm , 1991 .

[11]  George Steiner,et al.  Polynomial Algorithms for Hamiltonian Cycle in Cocomparability Graphs , 1994, SIAM J. Comput..

[12]  C. Pandu Rangan,et al.  Linear Algorithm for Optimal Path Cover Problem on Interval Graphs , 1990, Inf. Process. Lett..

[13]  Glenn K. Manacher,et al.  An Optimum Theta (n log n) Algorithm for Finding a Canonical Hamiltonian Path and a Canonical Hamiltonian Circuit in a Set of Intervals , 1990, Inf. Process. Lett..

[14]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.