Optimal order quasi-Monte Carlo integration in weighted Sobolev spaces of arbitrary smoothness
暂无分享,去创建一个
[1] F. Pillichshammer,et al. Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration , 2010 .
[2] H. Niederreiter,et al. Rational Points on Curves Over Finite Fields: Theory and Applications , 2001 .
[3] Henri Faure. Discrépances de suites associées à un système de numération (en dimension un) , 1981 .
[4] J. Dick. THE DECAY OF THE WALSH COEFFICIENTS OF SMOOTH FUNCTIONS , 2009, Bulletin of the Australian Mathematical Society.
[5] Henryk Wozniakowski,et al. When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..
[6] H. Niederreiter. Low-discrepancy and low-dispersion sequences , 1988 .
[7] Mario Ullrich,et al. On "Upper Error Bounds for Quadrature Formulas on Function Classes" by K.K. Frolov , 2014, MCQMC.
[8] Lauwerens Kuipers,et al. Uniform distribution of sequences , 1974 .
[9] Josef Dick,et al. Explicit Constructions of Quasi-Monte Carlo Rules for the Numerical Integration of High-Dimensional Periodic Functions , 2007, SIAM J. Numer. Anal..
[10] Vladimir N. Temlyakov,et al. Cubature formulas, discrepancy, and nonlinear approximation , 2003, J. Complex..
[11] Aicke Hinrichs,et al. Optimal quasi-Monte Carlo rules on order 2 digital nets for the numerical integration of multivariate periodic functions , 2016, Numerische Mathematik.
[12] I. Sobol. On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .
[13] Grace Wahba,et al. Spline Models for Observational Data , 1990 .
[14] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[15] Lev Markhasin,et al. Quasi-Monte Carlo methods for integration of functions with dominating mixed smoothness in arbitrary dimension , 2012, J. Complex..
[16] Josef Dick,et al. Walsh Spaces Containing Smooth Functions and Quasi-Monte Carlo Rules of Arbitrary High Order , 2008, SIAM J. Numer. Anal..
[17] Josef Dick,et al. Duality theory and propagation rules for higher order nets , 2011, Discret. Math..
[18] Harald Niederreiter,et al. Low-discrepancy point sets , 1986 .
[19] Josef Dick,et al. QMC Rules of Arbitrary High Order: Reproducing Kernel Hilbert Space Approach , 2009 .
[20] A. Hinrichs,et al. Stuttgart Fachbereich Mathematik Optimal quasi-Monte Carlo rules on higher order digital nets for the numerical integration of multivariate periodic functions , 2015 .
[21] Dirk Nuyens,et al. Lattice rules for nonperiodic smooth integrands , 2014, Numerische Mathematik.