Optimal order quasi-Monte Carlo integration in weighted Sobolev spaces of arbitrary smoothness

We investigate quasi-Monte Carlo integration using higher order digital nets in weighted Sobolev spaces of arbitrary fixed smoothness $\alpha \in \mathbb{N}$, $\alpha \ge 2$, defined over the $s$-dimensional unit cube. We prove that randomly digitally shifted order $\beta$ digital nets can achieve the convergence of the root mean square worst-case error of order $N^{-\alpha}(\log N)^{(s-1)/2}$ when $\beta \ge 2\alpha$. The exponent of the logarithmic term, i.e., $(s-1)/2$, is improved compared to the known result by Baldeaux and Dick, in which the exponent is $s\alpha /2$. Our result implies the existence of a digitally shifted order $\beta$ digital net achieving the convergence of the worst-case error of order $N^{-\alpha}(\log N)^{(s-1)/2}$, which matches a lower bound on the convergence rate of the worst-case error for any cubature rule using $N$ function evaluations and thus is best possible.

[1]  F. Pillichshammer,et al.  Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration , 2010 .

[2]  H. Niederreiter,et al.  Rational Points on Curves Over Finite Fields: Theory and Applications , 2001 .

[3]  Henri Faure Discrépances de suites associées à un système de numération (en dimension un) , 1981 .

[4]  J. Dick THE DECAY OF THE WALSH COEFFICIENTS OF SMOOTH FUNCTIONS , 2009, Bulletin of the Australian Mathematical Society.

[5]  Henryk Wozniakowski,et al.  When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..

[6]  H. Niederreiter Low-discrepancy and low-dispersion sequences , 1988 .

[7]  Mario Ullrich,et al.  On "Upper Error Bounds for Quadrature Formulas on Function Classes" by K.K. Frolov , 2014, MCQMC.

[8]  Lauwerens Kuipers,et al.  Uniform distribution of sequences , 1974 .

[9]  Josef Dick,et al.  Explicit Constructions of Quasi-Monte Carlo Rules for the Numerical Integration of High-Dimensional Periodic Functions , 2007, SIAM J. Numer. Anal..

[10]  Vladimir N. Temlyakov,et al.  Cubature formulas, discrepancy, and nonlinear approximation , 2003, J. Complex..

[11]  Aicke Hinrichs,et al.  Optimal quasi-Monte Carlo rules on order 2 digital nets for the numerical integration of multivariate periodic functions , 2016, Numerische Mathematik.

[12]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[13]  Grace Wahba,et al.  Spline Models for Observational Data , 1990 .

[14]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[15]  Lev Markhasin,et al.  Quasi-Monte Carlo methods for integration of functions with dominating mixed smoothness in arbitrary dimension , 2012, J. Complex..

[16]  Josef Dick,et al.  Walsh Spaces Containing Smooth Functions and Quasi-Monte Carlo Rules of Arbitrary High Order , 2008, SIAM J. Numer. Anal..

[17]  Josef Dick,et al.  Duality theory and propagation rules for higher order nets , 2011, Discret. Math..

[18]  Harald Niederreiter,et al.  Low-discrepancy point sets , 1986 .

[19]  Josef Dick,et al.  QMC Rules of Arbitrary High Order: Reproducing Kernel Hilbert Space Approach , 2009 .

[20]  A. Hinrichs,et al.  Stuttgart Fachbereich Mathematik Optimal quasi-Monte Carlo rules on higher order digital nets for the numerical integration of multivariate periodic functions , 2015 .

[21]  Dirk Nuyens,et al.  Lattice rules for nonperiodic smooth integrands , 2014, Numerische Mathematik.